IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v22y2025i9p1349-d1736605.html
   My bibliography  Save this article

Machine Learning-Based Prediction of Heatwave-Related Hospitalizations: A Case Study in Matam, Senegal

Author

Listed:
  • Mory Toure

    (Agence Nationale de l’Aviation Civile et de la Météorologie (ANACIM), Dakar BP 8184, Senegal
    Laboratoire de Physique de l’Atmosphère et de l’Ocean–Simeon Fongang (LPAO-SF), Ecole Superieure Polytechnique, Universite Cheikh Anta Diop (UCAD), Dakar BP 5085, Senegal)

  • Ibrahima Sy

    (Ministère de la Santé et de l’Action Sociale, Dakar BP 4024, Senegal
    Departement de Geographie, Universite Cheikh Anta Diop (UCAD), Dakar BP 5005, Senegal
    Centre de Suivi Ecologique, Dakar BP 15532, Senegal)

  • Ibrahima Diouf

    (Laboratoire de Physique de l’Atmosphère et de l’Ocean–Simeon Fongang (LPAO-SF), Ecole Superieure Polytechnique, Universite Cheikh Anta Diop (UCAD), Dakar BP 5085, Senegal
    Faculté des Sciences et Techniques, Université de Labe, Labe BP 210, Guinea)

  • Ousmane Gueye

    (Centre Hospitalier Régional El Hadji Ibrahima Niass (CHREIN), Kaolack BP 24030, Senegal)

  • Endalkachew Bekele

    (National Center for Environmental Prediction (NCEP), National Oceanic and Atmospheric Administration (NOAA), College Park, MD 20740, USA)

  • Md Abul Ehsan Bhuiyan

    (National Center for Environmental Prediction (NCEP), National Oceanic and Atmospheric Administration (NOAA), College Park, MD 20740, USA)

  • Marie Jeanne Sambou

    (Laboratoire de Physique de l’Atmosphère et de l’Ocean–Simeon Fongang (LPAO-SF), Ecole Superieure Polytechnique, Universite Cheikh Anta Diop (UCAD), Dakar BP 5085, Senegal)

  • Papa Ngor Ndiaye

    (Agence Nationale de l’Aviation Civile et de la Météorologie (ANACIM), Dakar BP 8184, Senegal)

  • Wassila Mamadou Thiaw

    (National Center for Environmental Prediction (NCEP), National Oceanic and Atmospheric Administration (NOAA), College Park, MD 20740, USA)

  • Daouda Badiane

    (Laboratoire de Physique de l’Atmosphère et de l’Ocean–Simeon Fongang (LPAO-SF), Ecole Superieure Polytechnique, Universite Cheikh Anta Diop (UCAD), Dakar BP 5085, Senegal)

  • Aida Diongue-Niang

    (Agence Nationale de l’Aviation Civile et de la Météorologie (ANACIM), Dakar BP 8184, Senegal)

  • Amadou Thierno Gaye

    (Laboratoire de Physique de l’Atmosphère et de l’Ocean–Simeon Fongang (LPAO-SF), Ecole Superieure Polytechnique, Universite Cheikh Anta Diop (UCAD), Dakar BP 5085, Senegal)

  • Ousmane Ndiaye

    (African Center of Meteorological Applications for Development (ACMAD), Niamey BP 13184, Niger)

  • Adama Faye

    (Institut de Santé et Développement (ISED), Université Cheikh Anta Diop (UCAD), Dakar BP 5005, Senegal)

Abstract

This study assesses the impact of heatwaves on hospital admissions in the Matam region of Senegal by combining climatic indices with machine learning methods. Using daily maximum temperature (TMAX) and heat index (HI), heatwave events were identified from 2017 to 2022. Hospital data from Ourossogui Regional Hospital were analyzed, and three predictive models, Random Forest (RF), Extreme Gradient Boosting (XGB), and Generalized Additive Models (GAMs), were compared. A bootstrapping approach with 1000 iterations was used to evaluate model robustness. The findings reveal a significant delayed effect of heatwaves, with increased hospitalizations occurring three to five days after the event. RF outperformed the other models with R 2 values ranging from 0.51 to 0.72. These findings highlight the need to enhance heatwave monitoring and promote the integration of impact-based climate forecasting into health early warning systems, particularly to protect vulnerable groups such as the elderly, children, and outdoor workers.

Suggested Citation

  • Mory Toure & Ibrahima Sy & Ibrahima Diouf & Ousmane Gueye & Endalkachew Bekele & Md Abul Ehsan Bhuiyan & Marie Jeanne Sambou & Papa Ngor Ndiaye & Wassila Mamadou Thiaw & Daouda Badiane & Aida Diongue-, 2025. "Machine Learning-Based Prediction of Heatwave-Related Hospitalizations: A Case Study in Matam, Senegal," IJERPH, MDPI, vol. 22(9), pages 1-22, August.
  • Handle: RePEc:gam:jijerp:v:22:y:2025:i:9:p:1349-:d:1736605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/22/9/1349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/22/9/1349/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:22:y:2025:i:9:p:1349-:d:1736605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.