IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3724-d1074008.html
   My bibliography  Save this article

Construction and Optimization of an Ecological Network in the Yellow River Source Region Based on MSPA and MCR Modelling

Author

Listed:
  • Jia Liu

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
    Shenzhen Data Management Center of Planning and Natural Resources (Shenzhen Geospatial Information Center), Shenzhen 518040, China)

  • Jianjun Chen

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
    Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China)

  • Yanping Yang

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China)

  • Haotian You

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
    Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China)

  • Xiaowen Han

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
    Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China)

Abstract

The source region of the Yellow River (SRYR) is an important water conservation and farming area in China. Under the dual influence of the natural environment and external pressure, ecological patches in the region are becoming increasingly fragmented, and landscape connectivity is continuously declining, which directly affect the landscape patch pattern and SRYR sustainable development. In the SRYR, morphological spatial pattern analysis (MSPA) and landscape index methods were used to extract ecologically important sources. Based on the minimum cumulative resistance model (MCR), Linkage Mapper was used to generate a potential corridor, and then potential stepped stone patches were identified and extracted by the gravity model and betweenness centrality to build an optimal SRYR ecological network. The distribution of patches in the core area of the SRYR was fragmented, accounting for 80.53% of the total grassland area. The 10 ecological sources based on the landscape connectivity index and 15 important corridors identified based on the MCR model were mainly distributed in the central and eastern regions of the SRYR. Through betweenness centrality, 10 stepped stone patches were added, and 45 planned ecological corridors were obtained to optimize the SRYR ecological network and enhance east and west connectivity. Our research results can provide an important reference for the protection of the SRYR ecosystem, and have important guiding significance and practical value for ecological network construction in ecologically fragmented areas.

Suggested Citation

  • Jia Liu & Jianjun Chen & Yanping Yang & Haotian You & Xiaowen Han, 2023. "Construction and Optimization of an Ecological Network in the Yellow River Source Region Based on MSPA and MCR Modelling," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3724-:d:1074008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanping Yang & Jianjun Chen & Yanping Lan & Guoqing Zhou & Haotian You & Xiaowen Han & Yu Wang & Xue Shi, 2022. "Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    2. Lu, Chengpeng & Ji, Wei & Hou, Muchen & Ma, Tianyang & Mao, Jinhuang, 2022. "Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Shanthala Devi, B.S. & Murthy, M.S.R. & Debnath, Bijan & Jha, C.S., 2013. "Forest patch connectivity diagnostics and prioritization using graph theory," Ecological Modelling, Elsevier, vol. 251(C), pages 279-287.
    4. Jiansheng Wu & Shengyong Zhang & Haihao Wen & Xuening Fan, 2022. "Research on Multi-Scale Ecological Network Connectivity—Taking the Guangdong–Hong Kong–Macao Greater Bay Area as a Case Study," IJERPH, MDPI, vol. 19(22), pages 1-26, November.
    5. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhonghua Yang & Caihong Ma & Yuanyuan Liu & Honghong Zhao & Yuqi Hua & Shengya Ou & Xin Fan, 2023. "Provincial-Scale Research on the Eco-Security Structure in the Form of an Ecological Network of the Upper Yellow River: A Case Study of the Ningxia Hui Autonomous Region," Land, MDPI, vol. 12(7), pages 1-22, July.
    2. Jiaqi Hu & Sheng Jiao & Huiwen Xia & Qiaoyun Qian, 2023. "Construction of Rural Multifunctional Landscape Corridor Based on MSPA and MCR Model—Taking Liukeng Cultural and Ecological Tourism Area as an Example," Sustainability, MDPI, vol. 15(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruifang Deng & Xue Ding & Jinliang Wang, 2023. "Landscape Ecological Risk Assessment and Spatial Pattern Evolution Analysis of the Central Yunnan Urban Agglomeration from 1995 to 2020 Based on Land Use/Cover Change," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    2. Hengrui Zhang & Jianing Zhang & Zhuozhuo Lv & Linjie Yao & Ning Zhang & Qing Zhang, 2023. "Spatio-Temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of the Yellow River Basin in Inner Mongolia," Land, MDPI, vol. 12(6), pages 1-15, May.
    3. Jincai Zhao & Yiyao Wang & Xiufeng Zhang & Qianxi Liu, 2022. "Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    4. Huaibin Wei & Yao Wang & Jing Liu & Yongxiao Cao & Xinyu Zhang, 2023. "Spatiotemporal Variations of Water Eutrophication and Non-Point Source Pollution Prevention and Control in the Main Stream of the Yellow River in Henan Province from 2012 to 2021," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    5. Yaotao Xu & Peng Li & Jinjin Pan & Yi Zhang & Xiaohu Dang & Xiaoshu Cao & Junfang Cui & Zhi Yang, 2022. "Eco-Environmental Effects and Spatial Heterogeneity of “Production-Ecology-Living” Land Use Transformation: A Case Study for Ningxia, China," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    6. Fei Gao & Yi Luo & Congju Zhao, 2023. "Effects of Climate and Land-Use Change on the Supply and Demand Relationship of Water Provision Services in the Yellow River Basin," Land, MDPI, vol. 12(12), pages 1-19, November.
    7. Shah, Wasi Ul Hassan & Hao, Gang & Yasmeen, Rizwana & Yan, Hong & Shen, Jintao & Lu, Yuting, 2023. "Role of China's agricultural water policy reforms and production technology heterogeneity on agriculture water usage efficiency and total factor productivity change," Agricultural Water Management, Elsevier, vol. 287(C).
    8. Wai Li & Xiaohong Chen & Ying Wang, 2022. "Spatiotemporal Patterns and Influencing Factors of Industrial Ecological Efficiency in Northeast China," Sustainability, MDPI, vol. 14(15), pages 1-18, August.
    9. Zichun Yan & Ninglong You & Lu Wang & Chengwei Lan, 2023. "Assessing the Impact of Road Network on Urban Landscape Ecological Risk Based on Corridor Cutting Degree Model in Fuzhou, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    10. Linlin Zhao & Rensheng Chen & Yong Yang & Guohua Liu & Xiqiang Wang, 2023. "Spatiotemporal Changes in Water Storage and Its Driving Factors in the Three-River Headwaters Region, Qinghai–Tibet Plateau," Land, MDPI, vol. 12(10), pages 1-19, October.
    11. Yunlin He & Yanhua Mo & Jiangming Ma, 2022. "Spatio-Temporal Evolution and Influence Mechanism of Habitat Quality in Guilin City, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    12. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    13. Dongchuan Wang & Hua Chai & Zhiheng Wang & Kangjian Wang & Hongyi Wang & Hui Long & Jianshe Gao & Aoze Wei & Sirun Wang, 2022. "Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    14. Almpanidou, Vasiliki & Mazaris, Antonios D. & Mertzanis, Yorgos & Avraam, Ioannis & Antoniou, Ioannis & Pantis, John D. & Sgardelis, Stefanos P., 2014. "Providing insights on habitat connectivity for male brown bears: A combination of habitat suitability and landscape graph-based models," Ecological Modelling, Elsevier, vol. 286(C), pages 37-44.
    15. Simone Valeri & Laura Zavattero & Giulia Capotorti, 2021. "Ecological Connectivity in Agricultural Green Infrastructure: Suggested Criteria for Fine Scale Assessment and Planning," Land, MDPI, vol. 10(8), pages 1-16, July.
    16. He Gao & Wei Song, 2022. "Assessing the Landscape Ecological Risks of Land-Use Change," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
    17. Gaowen Lei & Sidai Guo & Zihan Yuan, 2022. "Study on the Effect and Mechanism of Circular Economy Promotion Law on the Utilization Rate of Industrial Solid Waste in Resource-Based Cities," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    18. Ruzi Li & Shuqi Huang & Yi Bai & Yingzi Li & Yi Cao & Yaobin Liu, 2022. "Assessment of Sustainable Water Utilization Based on the Pressure–State–Response Model: A Case Study of the Yellow River Basin in China," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    19. Xiaolan Chen & Qinggang Meng & Jianing Shi & Yufei Liu & Jing Sun & Wanfang Shen, 2022. "Regional Differences and Convergence of Carbon Emissions Intensity in Cities along the Yellow River Basin in China," Land, MDPI, vol. 11(7), pages 1-19, July.
    20. Xvlu Wang & Yingjun Sun & Qinghao Liu & Liguo Zhang, 2023. "Construction and Optimization of Ecological Network Based on Landscape Ecological Risk Assessment: A Case Study in Jinan," Land, MDPI, vol. 12(4), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3724-:d:1074008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.