IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p13945-d954501.html
   My bibliography  Save this article

Assessing the Landscape Ecological Risks of Land-Use Change

Author

Listed:
  • He Gao

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    School of Geosciences, Yangtze University, Wuhan 430100, China)

  • Wei Song

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Hebei Collaborative Innovation Center for Urban-Rural Integration Development, Shijiazhuang 050061, China)

Abstract

In recent years, a changing global climate and the continuous expansion of the intensity and scope of human activities have led to regional differentiation in the surface landscape. This has caused numerous ecological risks under multiple pressure sources, gradually becoming an important factor restricting the sustainable development of economic and social health. With the continuous development of the social economy, land use and associated ecological risks will inevitably change. According to the forest transformation theory and the environmental Kuznets curve, we put forward the theoretical framework of ecological risk transformation of land-use change and took Zhangjiachuan County (China) as an example to verify it. Therefore, on the basis of Landsat satellite data, this paper used landscape structures to calculate an ecological risk index, and evaluated the ecological risk of land-use changes through pattern index analyses. The results show that, from 2000 to 2020, the ecological risk index of land-use change in Zhangjiachuan County exhibited an increasing and then decreasing trend, showing an overall “inverted U-shaped” trend of change consistent with the transformation theoretical framework of ecological risks of land use change. Secondly, in terms of patterns, the ecological risk of land-use change in Zhangjiachuan County showed a distribution feature of high in the west and low in the east. In 2000, high-risk areas were mainly concentrated in the central and northern areas, while low-risk areas were mainly concentrated in the eastern areas. From 2000 to 2015, the medium-risk areas expanded to the west and midwest, and the geographic centers of the risk areas were slightly offset. From 2015 to 2020, the overall pattern of ecological risk areas was basically the same as that of the previous stage, but the medium-risk areas were slightly reduced. In terms of quantity, from 2000 to 2015, the areas of the lowest risk level and low risk level decreased, while the areas of medium risk level, high risk level, and the highest risk level increased; from 2015 to 2020, the areas of the lowest risk level and low risk level increased, and the areas of medium risk level, high risk level, and highest risk level decreased. Lastly, the spatial aggregation of ecological risks in Zhangjiachuan County weakened slightly from 2000 to 2005, gradually increased from 2005 to 2015, and then slightly weakened from 2015 to 2020.

Suggested Citation

  • He Gao & Wei Song, 2022. "Assessing the Landscape Ecological Risks of Land-Use Change," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:13945-:d:954501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/13945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/13945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlson, Matt & Browne, David & Callaghan, Carolyn, 2019. "Application of land-use simulation to protected area selection for efficient avoidance of biodiversity loss in Canada’s western boreal region," Land Use Policy, Elsevier, vol. 82(C), pages 821-831.
    2. Yanbo Qu & Haining Zong & Desheng Su & Zongli Ping & Mei Guan, 2021. "Land Use Change and Its Impact on Landscape Ecological Risk in Typical Areas of the Yellow River Basin in China," IJERPH, MDPI, vol. 18(21), pages 1-26, October.
    3. Kong, Xuesong & Fu, Mengxue & Zhao, Xiang & Wang, Jing & Jiang, Ping, 2022. "Ecological effects of land-use change on two sides of the Hu Huanyong Line in China," Land Use Policy, Elsevier, vol. 113(C).
    4. Yanping Yang & Jianjun Chen & Yanping Lan & Guoqing Zhou & Haotian You & Xiaowen Han & Yu Wang & Xue Shi, 2022. "Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    5. Di Liu & Hai Chen & Hang Zhang & Tianwei Geng & Qinqin Shi, 2020. "Spatiotemporal Evolution of Landscape Ecological Risk Based on Geomorphological Regionalization during 1980–2017: A Case Study of Shaanxi Province, China," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    6. Peng Tian & Jialin Li & Hongbo Gong & Ruiliang Pu & Luodan Cao & Shuyao Shao & Zuoqi Shi & Xiuli Feng & Lijia Wang & Riuqing Liu, 2019. "Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    7. Wen Song & Wei Song & Haihong Gu & Fuping Li, 2020. "Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas," IJERPH, MDPI, vol. 17(6), pages 1-17, March.
    8. Jiahui Fan & Ya Wang & Zhen Zhou & Nanshan You & Jijun Meng, 2016. "Dynamic Ecological Risk Assessment and Management of Land Use in the Middle Reaches of the Heihe River Based on Landscape Patterns and Spatial Statistics," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    9. Dong Wang & Xiang Ji & Cheng Li & Yaxi Gong, 2021. "Spatiotemporal Variations of Landscape Ecological Risks in a Resource-Based City under Transformation," Sustainability, MDPI, vol. 13(9), pages 1-21, May.
    10. Fuwei Qiao & Yongping Bai & Lixia Xie & Xuedi Yang & Shuaishuai Sun, 2021. "Spatio-Temporal Characteristics of Landscape Ecological Risks in the Ecological Functional Zone of the Upper Yellow River, China," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    11. Jian Peng & Minli Zong & Yi'na Hu & Yanxu Liu & Jiansheng Wu, 2015. "Assessing Landscape Ecological Risk in a Mining City: A Case Study in Liaoyuan City, China," Sustainability, MDPI, vol. 7(7), pages 1-23, June.
    12. Jialin Li & Ruiliang Pu & Hongbo Gong & Xu Luo & Mengyao Ye & Baixiang Feng, 2017. "Evolution Characteristics of Landscape Ecological Risk Patterns in Coastal Zones in Zhejiang Province, China," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    13. Ying Li & Suiliang Huang, 2015. "Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leli Zong & Ming Zhang & Zi Chen & Xiaonan Niu & Guoguang Chen & Jie Zhang & Mo Zhou & Hongying Liu, 2023. "Ecological Risk Assessment of Geological Disasters Based on Probability-Loss Framework: A Case Study of Fujian, China," IJERPH, MDPI, vol. 20(5), pages 1-19, March.
    2. Ruifang Deng & Xue Ding & Jinliang Wang, 2023. "Landscape Ecological Risk Assessment and Spatial Pattern Evolution Analysis of the Central Yunnan Urban Agglomeration from 1995 to 2020 Based on Land Use/Cover Change," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    3. Fengzeng Lin & Yu Shao & Haibo Guo & Ruihong Yan & Chen Wang & Bolun Zhao, 2024. "Carbon Emissions and Intensity of Land Use: A Rural Setting Analysis in Ningde City, China," Land, MDPI, vol. 13(6), pages 1-29, May.
    4. Huiqing Han & Zhihua Su & Guangbin Yang, 2023. "Variations of Habitat Quality and Ecological Risk and Their Correlations with Landscape Metrics in a Robust Human Disturbed Coastal Region—Case Study: Xinggang Town in Southern China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    5. Lei Zhao & Zhengtao Shi & Guangxiong He & Li He & Wenfei Xi & Qin Jiang, 2023. "Land Use Change and Landscape Ecological Risk Assessment Based on Terrain Gradients in Yuanmou Basin," Land, MDPI, vol. 12(9), pages 1-19, September.
    6. Yaqi Cheng & Wei Song & Hao Yu & Xi Wei & Shuangqing Sheng & Bo Liu & He Gao & Junfang Li & Congjie Cao & Dazhi Yang, 2023. "Assessment and Prediction of Landscape Ecological Risk from Land Use Change in Xinjiang, China," Land, MDPI, vol. 12(4), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    2. Qiming Wang & Kun Yang & Lixiao Li & Yanhui Zhu, 2022. "Assessing the Terrain Gradient Effect of Landscape Ecological Risk in the Dianchi Lake Basin of China Using Geo-Information Tupu Method," IJERPH, MDPI, vol. 19(15), pages 1-19, August.
    3. Dong Wang & Xiang Ji & Cheng Li & Yaxi Gong, 2021. "Spatiotemporal Variations of Landscape Ecological Risks in a Resource-Based City under Transformation," Sustainability, MDPI, vol. 13(9), pages 1-21, May.
    4. Di Liu & Xiaoying Liang & Hai Chen & Hang Zhang & Nanzhao Mao, 2018. "A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    5. Dongchuan Wang & Hua Chai & Zhiheng Wang & Kangjian Wang & Hongyi Wang & Hui Long & Jianshe Gao & Aoze Wei & Sirun Wang, 2022. "Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    6. Jun Ma & Qiang Yu & Huiyuan Wang & Linzhe Yang & Ruirui Wang & Minzhe Fang, 2022. "Construction and Optimization of Wetland Landscape Ecological Network in Dongying City, China," Land, MDPI, vol. 11(8), pages 1-22, August.
    7. Yanping Yang & Jianjun Chen & Yanping Lan & Guoqing Zhou & Haotian You & Xiaowen Han & Yu Wang & Xue Shi, 2022. "Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    8. Hengrui Zhang & Jianing Zhang & Zhuozhuo Lv & Linjie Yao & Ning Zhang & Qing Zhang, 2023. "Spatio-Temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of the Yellow River Basin in Inner Mongolia," Land, MDPI, vol. 12(6), pages 1-15, May.
    9. Peng Tian & Luodan Cao & Jialin Li & Ruiliang Pu & Hongbo Gong & Changda Li, 2020. "Landscape Characteristics and Ecological Risk Assessment Based on Multi-Scenario Simulations: A Case Study of Yancheng Coastal Wetland, China," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    10. Yongchao Liu & Yongxue Liu & Jialin Li & Wanyun Lu & Xianglin Wei & Chao Sun, 2018. "Evolution of Landscape Ecological Risk at the Optimal Scale: A Case Study of the Open Coastal Wetlands in Jiangsu, China," IJERPH, MDPI, vol. 15(8), pages 1-21, August.
    11. Jianxiao Liu & Meilian Wang & Linchuan Yang, 2020. "Assessing Landscape Ecological Risk Induced by Land-Use/Cover Change in a County in China: A GIS- and Landscape-Metric-Based Approach," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    12. Yaqi Cheng & Xuyang Zhang & Wei Song, 2024. "Ecological Risk Assessment of Land Use Change in the Tarim River Basin, Xinjiang, China," Land, MDPI, vol. 13(4), pages 1-18, April.
    13. Li Li & Xiaoping Zhou & Lan Yang & Jinglong Duan & Zhuo Zeng, 2022. "Spatio-Temporal Characteristics and Influencing Factors of Ecological Risk in China’s North–South Transition Zone," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    14. Yanyan Jia & Xiaolan Tang & Wei Liu, 2020. "Spatial–Temporal Evolution and Correlation Analysis of Ecosystem Service Value and Landscape Ecological Risk in Wuhu City," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    15. Meirui Li & Baolei Zhang & Xiaobo Zhang & Shumin Zhang & Le Yin, 2023. "Exploring Spatio-Temporal Variations of Ecological Risk in the Yellow River Ecological Economic Belt Based on an Improved Landscape Index Method," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    16. Tao Yu & Anming Bao & Wenqiang Xu & Hao Guo & Liangliang Jiang & Guoxiong Zheng & Ye Yuan & Vincent NZABARINDA, 2019. "Exploring Variability in Landscape Ecological Risk and Quantifying Its Driving Factors in the Amu Darya Delta," IJERPH, MDPI, vol. 17(1), pages 1-21, December.
    17. Hui Wang, 2021. "Regional assessment of human-caused ecological risk in the Poyang Lake Eco-economic Zone using production–living–ecology analysis," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-22, February.
    18. Peng Tian & Jialin Li & Hongbo Gong & Ruiliang Pu & Luodan Cao & Shuyao Shao & Zuoqi Shi & Xiuli Feng & Lijia Wang & Riuqing Liu, 2019. "Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    19. Yun Liu & Weiheng Xu & Zehu Hong & Leiguang Wang & Guanglong Ou & Ning Lu, 2022. "Assessment of Spatial-Temporal Changes of Landscape Ecological Risk in Xishuangbanna, China from 1990 to 2019," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    20. Yanbo Qu & Haining Zong & Desheng Su & Zongli Ping & Mei Guan, 2021. "Land Use Change and Its Impact on Landscape Ecological Risk in Typical Areas of the Yellow River Basin in China," IJERPH, MDPI, vol. 18(21), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:13945-:d:954501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.