IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i9p5443-d805793.html
   My bibliography  Save this article

Characteristics of PM 2.5 in an Industrial City of Northern China: Mass Concentrations, Chemical Composition, Source Apportionment, and Health Risk Assessment

Author

Listed:
  • Wenyu Bai

    (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China)

  • Xueyan Zhao

    (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Baohui Yin

    (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Liyao Guo

    (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Wenge Zhang

    (National Institute of Metrology, Beijing 100029, China)

  • Xinhua Wang

    (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Wen Yang

    (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

Abstract

Urban and suburban PM 2.5 samples were collected simultaneously during selected periods representing each season in 2019 in Zibo, China. Samples were analysed for water-soluble inorganic ions, carbon components, and elements. A chemical mass balance model and health risk assessment model were used to investigate the source contributions to PM 2.5 and the human health risks posed by various pollution sources via the inhalation pathway. Almost 50% of the PM 2.5 samples exceeded the secondary standard of China’s air quality concentration limit (75 µg/m 3 , 24 h). Water-soluble inorganic ions were the main component of PM 2.5 in Zibo, accounting for 50 ± 8% and 56 ± 11% of PM 2.5 at the urban and suburban sites, respectively. OC and OC/EC decreased significantly in the past few years due to enhanced energy restructuring. Pearson correlation analysis showed that traffic emissions were the main source of heavy metals. The Cr(VI) concentrations were 1.53 and 1.92 ng/m 3 for urban and suburban sites, respectively, exceeding the national ambient air quality standards limit of 0.025 ng/m 3 . Secondary inorganic aerosols, traffic emissions, and secondary organic aerosols were the dominant contributors to PM 2.5 in Zibo, with the total contributions from these three sources accounting for approximately 80% of PM 2.5 and the remaining 20% attributed to traffic emissions. The non-carcinogenic risks from crustal dust for children were 2.23 and 1.15 in urban and suburban areas, respectively, exceeding the safe limit of 1.0 in both locations, as was the case for adults in urban areas. Meanwhile, the carcinogenic risks were all below the safe limit, with the non-carcinogenic and carcinogenic risks from traffic emissions being just below the limits. Strict control of precursor emissions, such as SO 2 , NOx, and VOCs, is a good way to reduce PM 2.5 pollution resulting from secondary aerosols. Traffic control, limiting or preventing outdoor activities, and wearing masks during haze episodes may be also helpful in reducing PM 2.5 pollution and its non-carcinogenic and carcinogenic health impacts in Zibo.

Suggested Citation

  • Wenyu Bai & Xueyan Zhao & Baohui Yin & Liyao Guo & Wenge Zhang & Xinhua Wang & Wen Yang, 2022. "Characteristics of PM 2.5 in an Industrial City of Northern China: Mass Concentrations, Chemical Composition, Source Apportionment, and Health Risk Assessment," IJERPH, MDPI, vol. 19(9), pages 1-18, April.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5443-:d:805793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/9/5443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/9/5443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiyuan Ding & Yingying Chen & Qinkai Li & Xiao-Dong Li, 2022. "Using Stable Sulfur Isotope to Trace Sulfur Oxidation Pathways during the Winter of 2017–2019 in Tianjin, North China," IJERPH, MDPI, vol. 19(17), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    2. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    3. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    4. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    5. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    6. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    7. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
    8. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.
    9. Ling-Yun He & Xiao-Feng Qi, 2021. "Environmental Courts, Environment and Employment: Evidence from China," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    10. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    11. Weicong Fu & Qunyue Liu & Cecil Konijnendijk van den Bosch & Ziru Chen & Zhipeng Zhu & Jinda Qi & Mo Wang & Emily Dang & Jianwen Dong, 2018. "Long-Term Atmospheric Visibility Trends and Their Relations to Socioeconomic Factors in Xiamen City, China," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    12. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    13. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    14. Wei Xue & Qingming Zhan & Qi Zhang & Zhonghua Wu, 2019. "Spatiotemporal Variations of Particulate and Gaseous Pollutants and Their Relations to Meteorological Parameters: The Case of Xiangyang, China," IJERPH, MDPI, vol. 17(1), pages 1-23, December.
    15. Ying Su & Chunyan Lu & Xiaoqing Lin & Lianxiu Zhong & Yibin Gao & Yifan Lei, 2020. "Analysis of Spatio-temporal Characteristics and Driving Forces of Air Quality in the Northern Coastal Comprehensive Economic Zone, China," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    16. Yang, Aoxi & Wang, Yahui, 2023. "Transition of household cooking energy in China since the 1980s," Energy, Elsevier, vol. 270(C).
    17. Damm, Yannic Rudá & Börner, Jan & Gerber, Nicolas, 2021. "Health Effects of the Amazon Soy Moratorium," 2021 Conference, August 17-31, 2021, Virtual 315401, International Association of Agricultural Economists.
    18. Shih Ying Chang & William Vizuete & Marc Serre & Lakshmi Pradeepa Vennam & Mohammad Omary & Vlad Isakov & Michael Breen & Saravanan Arunachalam, 2017. "Finely Resolved On‐Road PM2.5 and Estimated Premature Mortality in Central North Carolina," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2420-2434, December.
    19. James K. Hammitt & Peter Morfeld & Jouni T. Tuomisto & Thomas C. Erren, 2020. "Premature Deaths, Statistical Lives, and Years of Life Lost: Identification, Quantification, and Valuation of Mortality Risks," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 674-695, April.
    20. Rong Ma & Ke Li & Yixin Guo & Bo Zhang & Xueli Zhao & Soeren Linder & ChengHe Guan & Guoqian Chen & Yujie Gan & Jing Meng, 2021. "Mitigation potential of global ammonia emissions and related health impacts in the trade network," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5443-:d:805793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.