IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i20p13710-d949983.html
   My bibliography  Save this article

Simulation on the Permeability Evaluation of a Hybrid Liner for the Prevention of Contaminant Diffusion in Soils Contaminated with Total Petroleum Hydrocarbon

Author

Listed:
  • Jeongjun Park

    (Incheon Disaster Prevention Research Center, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea)

  • Gigwon Hong

    (Department of Civil Engineering, Halla University, 28 Halladae-gil, Wonju-si 26404, Korea)

Abstract

This study describes the test results to evaluate the impermeability efficiency, according to the total petroleum hydrocarbon (TPH) reaction time of a hybrid liner for preventing the TPH diffusion, and the numerical analysis results, according to the various TPH reaction times of the hybrid liner. The experimental results indicated that the hybrid liner performed effectively as an impermeable material under the condition of a 4 h reaction time between TPH and the hybrid liner. In other words, the permeability of the hybrid liner was lower than 7.64 × 10 −7 cm/s when the reaction time of the TPH and the hybrid liner exceeded 4 h. This means that polynorbornene applied as a reactant becomes completely gelated four hours after it reacts with TPH, demonstrating its applicability as a liner. The numerical analysis results to evaluate the TPH diffusion, according to the hybrid liner-TPH reaction time indicated that the concentration decreased, compared to the initial concentration as the hybrid liner-TPH reaction time increased, regardless of the head-difference and the observation point for all concentration conditions. In addition, the reduction ratio of the concentration, compared to the initial concentration was 99% ~ 100%, when the reaction time of the hybrid liner-TPH was more than 4 h. It was found that the concentration diffusion of TPH reacting with the hybrid liner was decreased when the distance from the hybrid liner and the reaction time of the hybrid liner-TPH were increased. In other words, in the case of a high-TPH condition, the concentration reduction ratio is 12.5~17.8%, 16.9~29.7%, depending on the distance ratio (D/L = 0.06, 0.54, 0.94), respectively, when the reaction time of the hybrid liner-TPH is 0 h and 0.5 h, respectively. In the case of medium- and low-TPH conditions, the concentration reduction ratio, according to the distance ratio is 12.0% to 20.8% and 17.0% to 29.8%, respectively. This result means that a numerical analysis model can be used sufficiently to predict the TPH diffusion, according to the distance from the location where the hybrid liner is installed.

Suggested Citation

  • Jeongjun Park & Gigwon Hong, 2022. "Simulation on the Permeability Evaluation of a Hybrid Liner for the Prevention of Contaminant Diffusion in Soils Contaminated with Total Petroleum Hydrocarbon," IJERPH, MDPI, vol. 19(20), pages 1-17, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:20:p:13710-:d:949983
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/20/13710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/20/13710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sang Hwan Lee & Jung Hyun Lee & Woo Chul Jung & Misun Park & Min Suk Kim & Seung Jae Lee & Hyun Park, 2020. "Changes in Soil Health with Remediation of Petroleum Hydrocarbon Contaminated Soils Using Two Different Remediation Technologies," Sustainability, MDPI, vol. 12(23), pages 1-10, December.
    2. Khalid Sayed & Lavania Baloo & Naresh Kumar Sharma, 2021. "Bioremediation of Total Petroleum Hydrocarbons (TPH) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin," IJERPH, MDPI, vol. 18(5), pages 1-26, February.
    3. Jeongjun Park, 2021. "Evaluation of Changes in the Permeability Characteristics of a Geotextile–Polynorbornene Liner for the Prevention of Pollutant Diffusion in Oil-Contaminated Soils," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    4. Xin Sui & Xuemei Wang & Yuhuan Li & Hongbing Ji, 2021. "Remediation of Petroleum-Contaminated Soils with Microbial and Microbial Combined Methods: Advances, Mechanisms, and Challenges," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    5. Farid Benyahia & Ahmed Shams Embaby, 2016. "Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems," IJERPH, MDPI, vol. 13(2), pages 1-11, February.
    6. Hongyang Lin & Yang Yang & Zhenxiao Shang & Qiuhong Li & Xiaoyin Niu & Yanfei Ma & Aiju Liu, 2022. "Study on the Enhanced Remediation of Petroleum-Contaminated Soil by Biochar/g-C 3 N 4 Composites," IJERPH, MDPI, vol. 19(14), pages 1-14, July.
    7. Elena Cristina Rada & Gianni Andreottola & Irina Aura Istrate & Paolo Viotti & Fabio Conti & Elena Romenovna Magaril, 2019. "Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT," IJERPH, MDPI, vol. 16(17), pages 1-11, August.
    8. Kanghee Cho & Eunji Myung & Hyunsoo Kim & Oyunbileg Purev & Cheonyoung Park & Nagchoul Choi, 2020. "Removal of Total Petroleum Hydrocarbons from Contaminated Soil through Microwave Irradiation," IJERPH, MDPI, vol. 17(16), pages 1-13, August.
    9. Hwan Lee & Yoonjin Lee & Jaeyoung Kim & Choltae Kim, 2014. "Field Application of Modified In Situ Soil Flushing in Combination with Air Sparging at a Military Site Polluted by Diesel and Gasoline in Korea," IJERPH, MDPI, vol. 11(9), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:caa:jnlswr:v:preprint:id:66-2023-swr is not listed on IDEAS
    2. Liping Li & Lanfang Han & Aiju Liu & Fayuan Wang, 2022. "Imperfect but Hopeful: New Advances in Soil Pollution and Remediation," IJERPH, MDPI, vol. 19(16), pages 1-3, August.
    3. Tatyana Korshunova & Elena Kuzina & Svetlana Mukhamatdyarova & Yuliyana Sharipova & Milyausha Iskuzhina, 2023. "Promising Strains of Hydrocarbon-Oxidizing Pseudomonads with Herbicide Resistance and Plant Growth-Stimulating Properties for Bioremediation of Oil-Contaminated Agricultural Soils," Agriculture, MDPI, vol. 13(6), pages 1-21, May.
    4. Rimas Meištininkas & Irena Vaškevičienė & Agnieszka I. Piotrowicz-Cieślak & Magdalena Krupka & Jūratė Žaltauskaitė, 2024. "Sustainable Recovery of the Health of Soil with Old Petroleum Hydrocarbon Contamination through Individual and Microorganism-Assisted Phytoremediation with Lotus corniculatus," Sustainability, MDPI, vol. 16(17), pages 1-19, August.
    5. Md Tabish Noori & Dayakar Thatikayala & Booki Min, 2022. "Bioelectrochemical Remediation for the Removal of Petroleum Hydrocarbon Contaminants in Soil," Energies, MDPI, vol. 15(22), pages 1-22, November.
    6. Ewelina Zając & Monika J. Fabiańska & Elżbieta Jędrszczyk & Tomasz Skalski, 2022. "Hydrocarbon Degradation and Microbial Survival Improvement in Response to γ-Polyglutamic Acid Application," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    7. Hanlin Feng & Jiemin Cheng, 2023. "Whole-Process Risk Management of Soil Amendments for Remediation of Heavy Metals in Agricultural Soil—A Review," IJERPH, MDPI, vol. 20(3), pages 1-14, January.
    8. Jeongjun Park, 2021. "Evaluation of Changes in the Permeability Characteristics of a Geotextile–Polynorbornene Liner for the Prevention of Pollutant Diffusion in Oil-Contaminated Soils," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    9. Dariusz Roman Ropek & Janina Gospodarek, 2022. "Entomopathogenic Nematode Steinernema feltiae as an Indicator of Soil Pollution with Oil Derivatives in Bioremediation Process," Agriculture, MDPI, vol. 12(12), pages 1-11, November.
    10. Mohammad Mahdi Dorafshan & Jahangir Abedi-Koupai & Saeid Eslamian & Mohammad Javad Amiri, 2023. "Vetiver Grass ( Chrysopogon zizanoides L.): A Hyper-Accumulator Crop for Bioremediation of Unconventional Water," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    11. Jingjing Yu & Panpan Wang & Bei Yuan & Minghao Wang & Pengfei Shi & Fasheng Li, 2024. "Remediation Technologies of Contaminated Sites in China: Application and Spatial Clustering Characteristics," Sustainability, MDPI, vol. 16(4), pages 1-14, February.
    12. Mihail Busu, 2020. "A Market Concentration Analysis of the Biomass Sector in Romania," Resources, MDPI, vol. 9(6), pages 1-10, May.
    13. Xiao Zhang & Chen Chen & Ting Cheng & Mingyue Wen & Lei Wang & Fenxu Pan, 2022. "Making Pb Adsorption-Saturated Attapulgite with Excellent Photocatalysis Properties through a Vulcanization Reaction and Its Application for MB Wastewater Degradation," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    14. Maria M. Gertsen & Viacheslav A. Arlyapov & Leonid V. Perelomov & Anna S. Kharkova & Anastasiia N. Golysheva & Yurii M. Atroshchenko & Anna Maria Cardinale & Andrea Pietro Reverberi, 2024. "Environmental Implications of Energy Sources: A Review on Technologies for Cleaning Oil-Contaminated Ecosystems," Energies, MDPI, vol. 17(14), pages 1-31, July.
    15. Mirosław Wyszkowski & Natalia Kordala, 2023. "Importance of Compost, Bentonite, and Calcium Oxide in Reducing Trace Element Content in Maize on Agricultural Soil Contaminated with Diesel Oil," Agriculture, MDPI, vol. 13(10), pages 1-14, October.
    16. Barbara Bertović & Monika Šabić Runjavec & Nolla Todorović & Ivan Zgrebec & Marija Vuković Domanovac, 2024. "Biotechnological Potential of Oil-Tolerant Strains for Possible Use in Bioremediation," Sustainability, MDPI, vol. 16(2), pages 1-16, January.
    17. Haoyu Wang & Shanghua Wu & Yuxiu Zhang & Tsing Bohu & Zhihui Bai & Xuliang Zhuang, 2022. "Understanding the Implications of Predicted Function for Assessment of Rapid Bioremediation in a Farmland-Oilfield Mixed Area," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    18. Ifeanyi Michael Smarte Anekwe & Yusuf Makarfi Isa, 2024. "Application of biostimulation and bioventing system as bioremediation strategy for the treatment of crude oil contaminated soils," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 19(2), pages 100-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:20:p:13710-:d:949983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.