IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i6p1111-d1154070.html
   My bibliography  Save this article

Promising Strains of Hydrocarbon-Oxidizing Pseudomonads with Herbicide Resistance and Plant Growth-Stimulating Properties for Bioremediation of Oil-Contaminated Agricultural Soils

Author

Listed:
  • Tatyana Korshunova

    (Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia)

  • Elena Kuzina

    (Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia)

  • Svetlana Mukhamatdyarova

    (Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia)

  • Yuliyana Sharipova

    (Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia)

  • Milyausha Iskuzhina

    (Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia)

Abstract

Nowadays, large areas of agricultural land are contaminated with chemical plant-protection products. Agricultural soils are also susceptible to oil pollution as a result of accidents on oil pipelines. Bioremediation of such soils from oil with the help of hydrocarbon-oxidizing bacteria is hindered by the presence of additional pollutants such as herbicides. In this work, seven strains of Pseudomonas were isolated and identified, which showed differences in ability of oil biodegradation (32.7–77.3%). All strains showed resistance to herbicides based on 2,4-D and substances from the class of imidazolinones, possessed phosphate-solubilizing and nitrogen-fixing activity, and produced indolyl-3-acetic acid (305–1627 ng/mL culture liquid). They stimulated the growth of barley and clover in soil with oil, as well as the growth of clover in soil with herbicide. In a vegetative experiment (duration 30 days, initial oil content in soil 2% wt., herbicide based on imazethapyr 0.002% wt.) of barley plants and P. alcaligenes UOM 10 or P. frederiksbergensis UOM 11, oil degradation was 48.1–52.7%, the same strains and clover plants, 37.9–38.6%. The studied bacteria have the potential to be used in the bioremediation of oil-contaminated agricultural soils, including in combination with phytomeliorant plants.

Suggested Citation

  • Tatyana Korshunova & Elena Kuzina & Svetlana Mukhamatdyarova & Yuliyana Sharipova & Milyausha Iskuzhina, 2023. "Promising Strains of Hydrocarbon-Oxidizing Pseudomonads with Herbicide Resistance and Plant Growth-Stimulating Properties for Bioremediation of Oil-Contaminated Agricultural Soils," Agriculture, MDPI, vol. 13(6), pages 1-21, May.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1111-:d:1154070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/6/1111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/6/1111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Sui & Xuemei Wang & Yuhuan Li & Hongbing Ji, 2021. "Remediation of Petroleum-Contaminated Soils with Microbial and Microbial Combined Methods: Advances, Mechanisms, and Challenges," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    2. Ram Swaroop Meena & Sandeep Kumar & Rahul Datta & Rattan Lal & Vinod Vijayakumar & Martin Brtnicky & Mahaveer Prasad Sharma & Gulab Singh Yadav & Manoj Kumar Jhariya & Chetan Kumar Jangir & Shamina Im, 2020. "Impact of Agrochemicals on Soil Microbiota and Management: A Review," Land, MDPI, vol. 9(2), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karin Kauer & Sandra Pärnpuu & Liina Talgre & Viacheslav Eremeev & Anne Luik, 2021. "Soil Particulate and Mineral-Associated Organic Matter Increases in Organic Farming under Cover Cropping and Manure Addition," Agriculture, MDPI, vol. 11(9), pages 1-23, September.
    2. Sicheng Zhang & Rui Zhao & Kening Wu & Qin Huang & Long Kang, 2021. "Effects of the Rapid Construction of a High-Quality Plough Layer Based on Woody Peat in a Newly Reclaimed Cultivated Land Area," Agriculture, MDPI, vol. 12(1), pages 1-16, December.
    3. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    4. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    5. Fazli Wahid & Shah Fahad & Subhan Danish & Muhammad Adnan & Zhen Yue & Shah Saud & Manzer H. Siddiqui & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils," Agriculture, MDPI, vol. 10(8), pages 1-14, August.
    6. Li Tan & Bin Yang & Zhibin Xue & Zhanqi Wang, 2021. "Assessing Heavy Metal Contamination Risk in Soil and Water in the Core Water Source Area of the Middle Route of the South-to-North Water Diversion Project, China," Land, MDPI, vol. 10(9), pages 1-24, September.
    7. Piotr Barbaś & Barbara Sawicka & Barbara Krochmal Marczak & Piotr Pszczółkowski, 2020. "Effect of Mechanical and Herbicide Treatments on Weed Densities and Biomass in Two Potato Cultivars," Agriculture, MDPI, vol. 10(10), pages 1-17, October.
    8. Mack, G. & Finger, R. & Ammann, J. & El Benni, N., 2023. "Modelling policies towards pesticide-free agricultural production systems," Agricultural Systems, Elsevier, vol. 207(C).
    9. Dimitrios E. Alexakis, 2020. "Contaminated Land by Wildfire Effect on Ultramafic Soil and Associated Human Health and Ecological Risk," Land, MDPI, vol. 9(11), pages 1-16, October.
    10. Elżbieta Patkowska, 2021. "Biostimulants Managed Fungal Phytopathogens and Enhanced Activity of Beneficial Microorganisms in Rhizosphere of Scorzonera ( Scorzonera hispanica L.)," Agriculture, MDPI, vol. 11(4), pages 1-26, April.
    11. Ewelina Zając & Monika J. Fabiańska & Elżbieta Jędrszczyk & Tomasz Skalski, 2022. "Hydrocarbon Degradation and Microbial Survival Improvement in Response to γ-Polyglutamic Acid Application," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    12. Jun Gao & Muhammad Faheem & Xiang Yu, 2022. "Global Research on Contaminated Soil Remediation: A Bibliometric Network Analysis," Land, MDPI, vol. 11(9), pages 1-16, September.
    13. Jeongjun Park & Gigwon Hong, 2022. "Simulation on the Permeability Evaluation of a Hybrid Liner for the Prevention of Contaminant Diffusion in Soils Contaminated with Total Petroleum Hydrocarbon," IJERPH, MDPI, vol. 19(20), pages 1-17, October.
    14. Dariusz Roman Ropek & Janina Gospodarek, 2022. "Entomopathogenic Nematode Steinernema feltiae as an Indicator of Soil Pollution with Oil Derivatives in Bioremediation Process," Agriculture, MDPI, vol. 12(12), pages 1-11, November.
    15. Lioutas, Evagelos D. & Charatsari, Chrysanthi & De Rosa, Marcello, 2021. "Digitalization of agriculture: A way to solve the food problem or a trolley dilemma?," Technology in Society, Elsevier, vol. 67(C).
    16. Mikhail Y. Syromyatnikov & Mariya M. Isuwa & Olga V. Savinkova & Mariya I. Derevshchikova & Vasily N. Popov, 2020. "The Effect of Pesticides on the Microbiome of Animals," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    17. Mohammad Mahdi Dorafshan & Jahangir Abedi-Koupai & Saeid Eslamian & Mohammad Javad Amiri, 2023. "Vetiver Grass ( Chrysopogon zizanoides L.): A Hyper-Accumulator Crop for Bioremediation of Unconventional Water," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    18. Lucantoni, Dario & Sy, Mouhamed Rassoul & Goïta, Mamadou & Veyret-Picot, Maude & Vicovaro, Marcello & Bicksler, Abram & Mottet, Anne, 2023. "Evidence on the multidimensional performance of agroecology in Mali using TAPE," Agricultural Systems, Elsevier, vol. 204(C).
    19. Emmanuel O. Fenibo & Grace N. Ijoma & Weiz Nurmahomed & Tonderayi Matambo, 2022. "The Potential and Green Chemistry Attributes of Biopesticides for Sustainable Agriculture," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    20. Zhiqiang Zhou & Wenyan Liu & Huilin Wang & Jingyu Yang, 2022. "The Impact of Environmental Regulation on Agricultural Productivity: From the Perspective of Digital Transformation," IJERPH, MDPI, vol. 19(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1111-:d:1154070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.