IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9267-d616707.html
   My bibliography  Save this article

Remediation of Petroleum-Contaminated Soils with Microbial and Microbial Combined Methods: Advances, Mechanisms, and Challenges

Author

Listed:
  • Xin Sui

    (Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Xuemei Wang

    (Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Yuhuan Li

    (Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Hongbing Ji

    (Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Beijing Municipal Key Laboratory of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China)

Abstract

The petroleum industry’s development has been supported by the demand for petroleum and its by-products. During extraction and transportation, however, oil will leak into the soil, destroying the structure and quality of the soil and even harming the health of plants and humans. Scientists are researching and developing remediation techniques to repair and re-control the afflicted environment due to the health risks and social implications of petroleum hydrocarbon contamination. Remediation of soil contamination produced by petroleum hydrocarbons, on the other hand, is a difficult and time-consuming job. Microbial remediation is a focus for soil remediation because of its convenience of use, lack of secondary contamination, and low cost. This review lists the types and capacities of microorganisms that have been investigated to degrade petroleum hydrocarbons. However, investigations have revealed that a single microbial remediation faces difficulties, such as inconsistent remediation effects and substantial environmental consequences. It is necessary to understand the composition and source of pollutants, the metabolic genes and pathways of microbial degradation of petroleum pollutants, and the internal and external aspects that influence remediation in order to select the optimal remediation treatment strategy. This review compares the degradation abilities of microbial–physical, chemical, and other combination remediation methods, and highlights the degradation capabilities and processes of the greatest microbe-biochar, microbe–nutrition, and microbe–plant technologies. This helps in evaluating and forecasting the chemical behavior of contaminants with both short- and long-term consequences. Although there are integrated remediation strategies for the removal of petroleum hydrocarbons, practical remediation remains difficult. The sources and quantities of petroleum pollutants, as well as their impacts on soil, plants, and humans, are discussed in this article. Following that, the focus shifted to the microbiological technique of degrading petroleum pollutants and the mechanism of the combined microbial method. Finally, the limitations of existing integrated microbiological techniques are highlighted.

Suggested Citation

  • Xin Sui & Xuemei Wang & Yuhuan Li & Hongbing Ji, 2021. "Remediation of Petroleum-Contaminated Soils with Microbial and Microbial Combined Methods: Advances, Mechanisms, and Challenges," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9267-:d:616707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9267/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbara Bertović & Monika Šabić Runjavec & Nolla Todorović & Ivan Zgrebec & Marija Vuković Domanovac, 2024. "Biotechnological Potential of Oil-Tolerant Strains for Possible Use in Bioremediation," Sustainability, MDPI, vol. 16(2), pages 1-16, January.
    2. Mohammad Mahdi Dorafshan & Jahangir Abedi-Koupai & Saeid Eslamian & Mohammad Javad Amiri, 2023. "Vetiver Grass ( Chrysopogon zizanoides L.): A Hyper-Accumulator Crop for Bioremediation of Unconventional Water," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    3. Ewelina Zając & Monika J. Fabiańska & Elżbieta Jędrszczyk & Tomasz Skalski, 2022. "Hydrocarbon Degradation and Microbial Survival Improvement in Response to γ-Polyglutamic Acid Application," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    4. Jeongjun Park & Gigwon Hong, 2022. "Simulation on the Permeability Evaluation of a Hybrid Liner for the Prevention of Contaminant Diffusion in Soils Contaminated with Total Petroleum Hydrocarbon," IJERPH, MDPI, vol. 19(20), pages 1-17, October.
    5. Tatyana Korshunova & Elena Kuzina & Svetlana Mukhamatdyarova & Yuliyana Sharipova & Milyausha Iskuzhina, 2023. "Promising Strains of Hydrocarbon-Oxidizing Pseudomonads with Herbicide Resistance and Plant Growth-Stimulating Properties for Bioremediation of Oil-Contaminated Agricultural Soils," Agriculture, MDPI, vol. 13(6), pages 1-21, May.
    6. Mirosław Wyszkowski & Natalia Kordala, 2023. "Importance of Compost, Bentonite, and Calcium Oxide in Reducing Trace Element Content in Maize on Agricultural Soil Contaminated with Diesel Oil," Agriculture, MDPI, vol. 13(10), pages 1-14, October.
    7. Haoyu Wang & Shanghua Wu & Yuxiu Zhang & Tsing Bohu & Zhihui Bai & Xuliang Zhuang, 2022. "Understanding the Implications of Predicted Function for Assessment of Rapid Bioremediation in a Farmland-Oilfield Mixed Area," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    8. Dariusz Roman Ropek & Janina Gospodarek, 2022. "Entomopathogenic Nematode Steinernema feltiae as an Indicator of Soil Pollution with Oil Derivatives in Bioremediation Process," Agriculture, MDPI, vol. 12(12), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9267-:d:616707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.