IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i11p6915-d832029.html
   My bibliography  Save this article

Effect of Precipitation Variation on Soil Respiration in Rain-Fed Winter Wheat Systems on the Loess Plateau, China

Author

Listed:
  • Houkun Chu

    (State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
    National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, Qingyang 745004, China)

  • Hong Ni

    (State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
    National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, Qingyang 745004, China)

  • Jingyong Ma

    (State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
    National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, Qingyang 745004, China)

  • Yuying Shen

    (State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
    National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, Qingyang 745004, China)

Abstract

Global climate change has aggravated the hydrological cycle by changing both the amount and distribution of precipitation, and this is especially notable in the semiarid Loess Plateau. How these precipitation variations have affected soil carbon (C) emission by the agroecosystems is still unclear. Here, to evaluate the effects of precipitation variation on soil respiration (R s ), a field experiment (from 2019 to 2020) was conducted with 3 levels of manipulation, including ambient precipitation (CK), 30% decreased precipitation (P −30 ), and 30% increased precipitation (P +30 ) in rain-fed winter wheat ( Triticum aestivum L.) agroecosystems on the Loess Plateau, China. The results showed that the average R s in P −30 treatment was significantly higher than those in the CK and P +30 treatments ( p < 0.05), and the cumulative CO 2 emissions were 406.37, 372.58 and 383.59 g C m −2 , respectively. Seasonal responses of R s to the soil volumetric moisture content (VWC) were affected by the different precipitation treatments. R s was quadratically correlated with the VWC in the CK and P +30 treatments, and the threshold of the optimal VWC for R s was approximately 16.06–17.07%. However, R s was a piecewise linear function of the VWC in the P −30 treatment. The synergism of soil temperature (T s ) and VWC can better explain the variation in soil respiration in the CK and P −30 treatments. However, an increase in precipitation led to the decoupling of the R s responses to T s . The temperature sensitivity of respiration (Q 10 ) varied with precipitation variation. Q 10 was positive correlated with seasonal T s in the CK and P +30 treatments, but exhibited a negative polynomial correlation with seasonal T s in the P −30 treatment. R s also exhibited diurnal clockwise hysteresis loops with T s in the three precipitation treatments, and the seasonal dynamics of the diurnal lag time were significantly negatively correlated with the VWC. Our study highlighted that understanding the synergistic and decoupled responses of R s and Q 10 to T s and VWC and the threshold of the change in response to the VWC under precipitation variation scenarios can benefit the prediction of future C balances in agroecosystems in semiarid regions under climate change.

Suggested Citation

  • Houkun Chu & Hong Ni & Jingyong Ma & Yuying Shen, 2022. "Effect of Precipitation Variation on Soil Respiration in Rain-Fed Winter Wheat Systems on the Loess Plateau, China," IJERPH, MDPI, vol. 19(11), pages 1-18, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6915-:d:832029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/11/6915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/11/6915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Yueyue & Ma, Xiangcheng & Wang, Yingxin & Ali, Shahzad & Cai, Tie & Jia, Zhikuan, 2020. "Effects of ridge-furrow mulching system with supplementary irrigation on soil respiration in winter wheat fields under different rainfall conditions," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Yiqi Luo & Shiqiang Wan & Dafeng Hui & Linda L. Wallace, 2001. "Acclimatization of soil respiration to warming in a tall grass prairie," Nature, Nature, vol. 413(6856), pages 622-625, October.
    3. Chonggang Xu & Nate G. McDowell & Rosie A. Fisher & Liang Wei & Sanna Sevanto & Bradley O. Christoffersen & Ensheng Weng & Richard S. Middleton, 2019. "Increasing impacts of extreme droughts on vegetation productivity under climate change," Nature Climate Change, Nature, vol. 9(12), pages 948-953, December.
    4. Jian Liu & Bin Wang & Mark A. Cane & So-Young Yim & June-Yi Lee, 2013. "Divergent global precipitation changes induced by natural versus anthropogenic forcing," Nature, Nature, vol. 493(7434), pages 656-659, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Yao & Li, Guang & Lu, Yanhua & Liu, Shuainan, 2023. "Modelling the impact of climate change and tillage practices on soil CO2 emissions from dry farmland in the Loess Plateau of China," Ecological Modelling, Elsevier, vol. 478(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaoxu & Liu, Xiaomin & Yang, Yaotian & Yu, Miao & Tian, Hailong, 2024. "The productivity anomalies and economic losses of different grassland ecosystems caused by flash drought," Agricultural Water Management, Elsevier, vol. 305(C).
    2. Cai, Qingyin & Çakır, Metin & Beatty, Timothy & Park, Timothy A., 2022. "Drought and the Specialty Crops Production in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322530, Agricultural and Applied Economics Association.
    3. Yanchao Zhu & Peng Yang & Jun Xia & Heqing Huang & Yaning Chen & Lanhai Li & Kaiya Sun & Jingxia Song & Xiaorui Shi & Xixi Lu, 2025. "Differential impact of flash droughts on water use efficiency in terrestrial ecosystems in Central Asia," Climatic Change, Springer, vol. 178(3), pages 1-20, March.
    4. V. Savo & K. E. Kohfeld & J. Sillmann & C. Morton & J. Bailey & A. S. Haslerud & C. Le Quéré & D. Lepofsky, 2024. "Using human observations with instrument-based metrics to understand changing rainfall patterns," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Yuanyuan Wang & Zhenghua Hu & A. R. M. Towfiqul Islam & Shutao Chen & Dongyao Shang & Ying Xue, 2019. "Effect of Warming and Elevated O 3 Concentration on CO 2 Emissions in a Wheat-Soybean Rotation Cropland," IJERPH, MDPI, vol. 16(10), pages 1-19, May.
    6. Adama A. Gross & Uriah G. Bailey & Inioluwa Ogunseye, 2024. "Corruption, Prebendalism and the Fragile State: A Case Study on Liberia," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(2), pages 1445-1457, February.
    7. Yuyang Yu & Jing Li & Zixiang Zhou & Li Zeng & Cheng Zhang, 2019. "Estimation of the Value of Ecosystem Carbon Sequestration Services under Different Scenarios in the Central China (the Qinling-Daba Mountain Area)," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    8. Xiaoqing Shi & Tianling Qin & Hanjiang Nie & Baisha Weng & Shan He, 2019. "Changes in Major Global River Discharges Directed into the Ocean," IJERPH, MDPI, vol. 16(8), pages 1-19, April.
    9. Decheng Zhou & Lu Hao & John B. Kim & Peilong Liu & Cen Pan & Yongqiang Liu & Ge Sun, 2019. "Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau," Climatic Change, Springer, vol. 156(1), pages 31-50, September.
    10. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Yueyue Xu & Yingxin Wang & Xiangcheng Ma & Tie Cai & Zhikuan Jia, 2022. "Effect of a Ridge-Furrow Mulching System and Limited Supplementary Irrigation on N 2 O Emission Characteristics and Grain Yield of Winter Wheat ( Triticum aestivum L.) Fields under Dryland Conditions," Agriculture, MDPI, vol. 12(5), pages 1-16, April.
    12. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Yaoping Wang & Jiafu Mao & Forrest M. Hoffman & Céline J. W. Bonfils & Hervé Douville & Mingzhou Jin & Peter E. Thornton & Daniel M. Ricciuto & Xiaoying Shi & Haishan Chen & Stan D. Wullschleger & Shi, 2022. "Quantification of human contribution to soil moisture-based terrestrial aridity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Xiangtao Wang & Zhigang Hu & Ziwei Zhang & Jiwang Tang & Ben Niu, 2024. "Altitude-Shifted Climate Variables Dominate the Drought Effects on Alpine Grasslands over the Qinghai–Tibetan Plateau," Sustainability, MDPI, vol. 16(15), pages 1-16, August.
    15. Xinyi Zhang & Xiaoyue Wang & Constantin M. Zohner & Josep Peñuelas & Yang Li & Xiuchen Wu & Yao Zhang & Huiying Liu & Pengju Shen & Xiaoxu Jia & Wenbin Liu & Dashuan Tian & Prajal Pradhan & Adandé Bel, 2025. "Declining precipitation frequency may drive earlier leaf senescence by intensifying drought stress and enhancing drought acclimation," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    16. Kaiqiang Bao & Haifeng Tian & Min Su & Liping Qiu & Xiaorong Wei & Yanjiang Zhang & Jian Liu & Hailong Gao & Jimin Cheng, 2019. "Stability of Ecosystem CO 2 Flux in Response to Changes in Precipitation in a Semiarid Grassland," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    17. Kailiang Yu & Lei He & Shuli Niu & Jinsong Wang & Pablo Garcia-palacios & Marina Dacal & Colin Averill & Katerina Georgiou & Jian-sheng Ye & Fei Mo & Lu Yang & Thomas W. Crowther, 2025. "Nonlinear microbial thermal response and its implications for abrupt soil organic carbon responses to warming," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Dai, Yulong & Fan, Junliang & Liao, Zhenqi & Zhang, Chen & Yu, Jiang & Feng, Hanlong & Zhang, Fucang & Li, Zhijun, 2022. "Supplemental irrigation and modified plant density improved photosynthesis, grain yield and water productivity of winter wheat under ridge-furrow mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    19. Osvaldo Sala & Laureano Gherardi & Debra Peters, 2015. "Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions," Climatic Change, Springer, vol. 131(2), pages 213-227, July.
    20. Lilian Wangui Ndungu & John Bosco Kyalo Kiema & David Nyangau Siriba & Denis Macharia Muthike & Samuel Wamathai Ndungu, 2022. "A Forward Future-Based Approach to Optimizing Agriculture and Climate Change Adaptation in Lower Eastern Kenya," Land, MDPI, vol. 11(12), pages 1-14, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6915-:d:832029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.