IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i5p621-d803750.html
   My bibliography  Save this article

Effect of a Ridge-Furrow Mulching System and Limited Supplementary Irrigation on N 2 O Emission Characteristics and Grain Yield of Winter Wheat ( Triticum aestivum L.) Fields under Dryland Conditions

Author

Listed:
  • Yueyue Xu

    (Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan 030031, China
    College of Agronomy, Northwest A&F University, Xi’an 712100, China
    Key Laboratory of Crop Physi-Ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Xi’an 712100, China)

  • Yingxin Wang

    (College of Agronomy, Northwest A&F University, Xi’an 712100, China
    Key Laboratory of Crop Physi-Ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Xi’an 712100, China)

  • Xiangcheng Ma

    (College of Agronomy, Northwest A&F University, Xi’an 712100, China
    Key Laboratory of Crop Physi-Ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Xi’an 712100, China)

  • Tie Cai

    (College of Agronomy, Northwest A&F University, Xi’an 712100, China
    Key Laboratory of Crop Physi-Ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Xi’an 712100, China)

  • Zhikuan Jia

    (College of Agronomy, Northwest A&F University, Xi’an 712100, China
    Key Laboratory of Crop Physi-Ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Xi’an 712100, China)

Abstract

Knowledge of the characteristics of N 2 O emissions and the influential mechanism is of great significance to mitigate greenhouse gas emissions in semi-arid areas. In the present study, a three-year water-control study was conducted; three simulated rainfall amounts (heavy, normal, and light rainfall = 275, 200, and 125 mm, respectively), two wheat ( Triticum aestivum L. ) planting modes (RF (ridge–furrow mulching system) and TF (traditional flat planting)) and four supplementary irrigation amounts (150, 75, 37.5, and 0 mm) were set up. The effects of different cultivation methods and irrigation amounts on soil N 2 O emissions, the soil water content, available nitrogen content, and denitrifying enzyme activity were investigated to clarify the N 2 O emission mechanism in winter wheat fields ( Triticum aestivum L. ). The results obtained after three years showed that compared with TF, the N 2 O emissions under RF decreased by 21.62–30.72% ( p < 0.001), whereas the soil water content increased by 6.26–8.82%, the available nitrogen content decreased by 1.71–16.24%, and the denitrifying enzyme activities increased by 0.2–24.16% under heavy rainfall conditions. Under conditions with normal and light rainfall, the N 2 O emission fluxes under RF increased by 3.66–12.46% and 6.08–15.57% ( p > 0.05), while the soil water contents increased by 6.13–11.49% and 8.05–13.88%, the soil available nitrogen contents decreased by 11.0–21.42% and 19.93–34.44%, and the denitrifying enzyme activities increased by 0.01–24.08% and 0.03–20.79% compared with TF. Principal component analysis showed that the main factors related to N 2 O emissions under RF were the soil moisture content and available nitrogen content; these factors combined explained 94.37% the variation of the N 2 O emissions. However, the main factors under TF were the soil moisture content and denitrifying enzyme activity; these factors combined explained 85.81%. In the heavy and normal rainfall years, compared with TF, using RF and 75 mm irrigation achieved the goal of reducing water usage as well as decreasing the N 2 O emissions (or N 2 O increase was not significant). In light rainfall years, RF with 150 mm irrigation obtained significant reductions in water usage compared with TF but it also increased the N 2 O emission flux. Under different rainfall years, the yield of RF increased by 2.89–50.44% compared with the TF system, and the increase in wheat grain yield increased with decreasing rainfall.

Suggested Citation

  • Yueyue Xu & Yingxin Wang & Xiangcheng Ma & Tie Cai & Zhikuan Jia, 2022. "Effect of a Ridge-Furrow Mulching System and Limited Supplementary Irrigation on N 2 O Emission Characteristics and Grain Yield of Winter Wheat ( Triticum aestivum L.) Fields under Dryland Conditions," Agriculture, MDPI, vol. 12(5), pages 1-16, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:621-:d:803750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/5/621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/5/621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Ran & Xinlu Bai & Yan Long & Ping Ai, 2022. "Yield and Quality of Rice under the Effects of Digestate Application," Agriculture, MDPI, vol. 12(4), pages 1-10, April.
    2. Xu, Yueyue & Ma, Xiangcheng & Wang, Yingxin & Ali, Shahzad & Cai, Tie & Jia, Zhikuan, 2020. "Effects of ridge-furrow mulching system with supplementary irrigation on soil respiration in winter wheat fields under different rainfall conditions," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Lei Wang & Da-Cheng Hao & Sisi Fan & Hongtu Xie & Xuelian Bao & Zhongjun Jia & Lianfeng Wang, 2022. "N 2 O Emission and Nitrification/Denitrification Bacterial Communities in Upland Black Soil under Combined Effects of Early and Immediate Moisture," Agriculture, MDPI, vol. 12(3), pages 1-22, February.
    4. Iqra Rehman & Muhammad Riaz & Sajid Ali & Muhammad Saleem Arif & Shafaqat Ali & Mohammed Nasser Alyemeni & Abdulaziz Abdullah Alsahli, 2021. "Evaluating the Effects of Biochar with Farmyard Manure under Optimal Mineral Fertilizing on Tomato Growth, Soil Organic C and Biochemical Quality in a Low Fertility Soil," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    5. Jia, Qianmin & Sun, Lefeng & Ali, Shahzad & Zhang, Yan & Liu, Donghua & Kamran, Muhammad & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong, 2018. "Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 202(C), pages 19-32.
    6. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    7. Björn Ole Sander & Pia Schneider & Ryan Romasanta & Kristine Samoy-Pascual & Evangeline B. Sibayan & Constancio A. Asis & Reiner Wassmann, 2020. "Potential of Alternate Wetting and Drying Irrigation Practices for the Mitigation of GHG Emissions from Rice Fields: Two Cases in Central Luzon (Philippines)," Agriculture, MDPI, vol. 10(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    2. Zhang, Peng & Wei, Ting & Han, Qingfang & Ren, Xiaolong & Jia, Zhikuan, 2020. "Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Liao, Zhenqi & Zeng, Hualiang & Fan, Junliang & Lai, Zhenlin & Zhang, Chen & Zhang, Fucang & Wang, Haidong & Cheng, Minghui & Guo, Jinjin & Li, Zhijun & Wu, Peng, 2022. "Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching," Agricultural Water Management, Elsevier, vol. 268(C).
    4. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    5. Houkun Chu & Hong Ni & Jingyong Ma & Yuying Shen, 2022. "Effect of Precipitation Variation on Soil Respiration in Rain-Fed Winter Wheat Systems on the Loess Plateau, China," IJERPH, MDPI, vol. 19(11), pages 1-18, June.
    6. Ginbert P. Cuaton & Laurence L. Delina, 2022. "Two decades of rice research in Indonesia and the Philippines: A systematic review and research agenda for the social sciences," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-21, December.
    7. Chen, Ning & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Ding, Zongjiang & Peng, Zunyuan, 2019. "Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field," Agricultural Water Management, Elsevier, vol. 226(C).
    8. Ahmad, Irshad & Yan, Zhengang & Kamran, Muhammad & Ikram, Khushnuma & Ghani, Muhammad Usman & Hou, Fujiang, 2022. "Nitrogen management and supplemental irrigation affected greenhouse gas emissions, yield and nutritional quality of fodder maize in an arid region," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Hongjun Liu & Wenyi Zhang, 2022. "Working Performance of Bidirectional Profiling Press Device in Hilly Areas of Northeast China," Agriculture, MDPI, vol. 12(9), pages 1-12, September.
    10. Ye, Tianyang & Ma, Jifeng & Zhang, Pei & Shan, Song & Liu, Leilei & Tang, Liang & Cao, Weixing & Liu, Bing & Zhu, Yan, 2022. "Interaction effects of irrigation and nitrogen on the coordination between crop water productivity and nitrogen use efficiency in wheat production on the North China Plain," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Chen, Zhijun & Sun, Shijun & Zhu, Zhenchuang & Jiang, Hao & Zhang, Xudong, 2019. "Assessing the effects of plant density and plastic film mulch on maize evaporation and transpiration using dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 225(C).
    12. Hou, Xianqing & Li, Rong & He, Wenshou & Ma, Kun, 2020. "Effects of planting density on potato growth, yield, and water use efficiency during years with variable rainfall on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 230(C).
    13. Yunqi Wang & Fuli Gao & Jiapeng Yang & Jianyun Zhao & Xiaoge Wang & Guoying Gao & Rui Zhang & Zhikuan Jia, 2018. "Spatio-Temporal Variation in Dryland Wheat Yield in Northern Chinese Areas: Relationship with Precipitation, Temperature and Evapotranspiration," Sustainability, MDPI, vol. 10(12), pages 1-12, November.
    14. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Yang, Wenjia & Yan, Naitong & Zhang, Jiali & Yan, Jiakun & Ma, Dengke & Wang, Shiwen & Yin, Lina, 2022. "The applicability of water-permeable plastic film and biodegradable film as alternatives to polyethylene film in crops on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 274(C).
    16. Dai, Yulong & Fan, Junliang & Liao, Zhenqi & Zhang, Chen & Yu, Jiang & Feng, Hanlong & Zhang, Fucang & Li, Zhijun, 2022. "Supplemental irrigation and modified plant density improved photosynthesis, grain yield and water productivity of winter wheat under ridge-furrow mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Wang, Yingxin & Guo, Qin & Xu, Yirui & Zhang, Peng & Cai, Tie & Jia, Zhikuan, 2022. "Optimizing urea deep placement to rainfall can maximize crop water-nitrogen productivity and decrease nitrate leaching in winter wheat," Agricultural Water Management, Elsevier, vol. 274(C).
    18. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    19. Meng, Xiangping & Lian, Yanhao & Liu, Qi & Zhang, Peng & Jia, Zhikuan & Han, Qingfang, 2020. "Optimizing the planting density under the ridge and furrow rainwater harvesting system to improve crop water productivity for foxtail millet in semiarid areas," Agricultural Water Management, Elsevier, vol. 238(C).
    20. Yuan Li & Zhenxing Zhang & Jingwei Wang & Mingzhi Zhang, 2022. "Soil Aeration and Plastic Film Mulching Increase the Yield Potential and Quality of Tomato ( Solanum lycopersicum )," Agriculture, MDPI, vol. 12(2), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:621-:d:803750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.