IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v230y2020ics0378377419313289.html
   My bibliography  Save this article

Effects of planting density on potato growth, yield, and water use efficiency during years with variable rainfall on the Loess Plateau, China

Author

Listed:
  • Hou, Xianqing
  • Li, Rong
  • He, Wenshou
  • Ma, Kun

Abstract

A 3-yr field study was conducted in semiarid areas of the Loess Plateau to investigate the effects of different planting densities on the soil water, potato growth, yield, and WUE during the normal year (2015), relatively dry year (2016), and relatively wet year (2017). The five potato planting densities were 3.75 × 104 (A, traditional local planting density as a control), 4.50 × 104 (B), 5.25 × 104 (C), 6.00 × 104 (D), and 6.75 × 104 plants ha–1 (E). During the three years, the differences in soil water storage among the five planting densities were significant in the early and middle potato growth stages, when the soil water storage levels in treatments B and C were 8.8 % and 10.8 % higher (P < 0.05) than those in A. Treatments B and C significantly (P < 0.05) increased the potato emergence rate by 12.5 % and 7.5 % to promote growth in the early and middle stages. The planting density had a decreasing parabolic relationship with the potato yield. After fitting a function to the three years of data, the highest tuber potato yield varied with the amount of rainfall and the optimum level was 5.12–5.58 × 104 plants ha−1. The WUE and rainwater use efficiency (RWUE) were significantly higher under B and C compared with A in the normal and relatively dry years. WUE and RWUE were significantly higher in B, C, and D compared with A in the relatively wet year. The optimum planting density with treatments B and C obtained higher net profits. Thus, the recommended optimum planting density should be 4.50–5.12 × 104 plants ha−1 in relatively dry years and 5.13–5.58 × 104 plants ha−1 in normal and relatively wet years to increase dryland potato production and water use efficiency in the semiarid regions of the Loess Plateau, China.

Suggested Citation

  • Hou, Xianqing & Li, Rong & He, Wenshou & Ma, Kun, 2020. "Effects of planting density on potato growth, yield, and water use efficiency during years with variable rainfall on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:agiwat:v:230:y:2020:i:c:s0378377419313289
    DOI: 10.1016/j.agwat.2019.105982
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419313289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shulan & Wang, Hao & Zhang, Yuanhong & Wang, Rui & Zhang, Yujiao & Xu, Zonggui & Jia, Guangcan & Wang, Xiaoli & Li, Jun, 2018. "The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 376-384.
    2. Hussain, Ghulam & Al-Jaloud, Ali A., 1995. "Effect of irrigation and nitrogen on water use efficiency of wheat in Saudi Arabia," Agricultural Water Management, Elsevier, vol. 27(2), pages 143-153, June.
    3. Li, Feng-Min & Wang, Ping & Wang, Jun & Xu, Jin-Zhang, 2004. "Effects of irrigation before sowing and plastic film mulching on yield and water uptake of spring wheat in semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 67(2), pages 77-88, June.
    4. Jia, Qianmin & Sun, Lefeng & Ali, Shahzad & Zhang, Yan & Liu, Donghua & Kamran, Muhammad & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong, 2018. "Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 202(C), pages 19-32.
    5. Ren, Xinmao & Sun, Dongbao & Wang, Qingsuo, 2016. "Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 171(C), pages 40-48.
    6. Huang, Yilong & Chen, Liding & Fu, Bojie & Huang, Zhilin & Gong, Jie, 2005. "The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects," Agricultural Water Management, Elsevier, vol. 72(3), pages 209-222, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    2. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    3. Hou, Xianqing & Li, Rong, 2019. "Interactive effects of autumn tillage with mulching on soil temperature, productivity and water use efficiency of rainfed potato in loess plateau of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Su, Ziyou & Zhang, Jinsong & Wu, Wenliang & Cai, Dianxiong & Lv, Junjie & Jiang, Guanghui & Huang, Jian & Gao, Jun & Hartmann, Roger & Gabriels, Donald, 2007. "Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 87(3), pages 307-314, February.
    5. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    6. Liu, Zhen & Ma, Feng-yun & Hu, Tong-xi & Zhao, Kai-guang & Gao, Tian-ping & Zhao, Hong-xiang & Ning, Tang-yuan, 2020. "Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices," Agricultural Water Management, Elsevier, vol. 229(C).
    7. Chakraborty, Debashis & Nagarajan, Shantha & Aggarwal, Pramila & Gupta, V.K. & Tomar, R.K. & Garg, R.N. & Sahoo, R.N. & Sarkar, A. & Chopra, U.K. & Sarma, K.S. Sundara & Kalra, N., 2008. "Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 95(12), pages 1323-1334, December.
    8. Chen, Zhijun & Sun, Shijun & Zhu, Zhenchuang & Jiang, Hao & Zhang, Xudong, 2019. "Assessing the effects of plant density and plastic film mulch on maize evaporation and transpiration using dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 225(C).
    9. Wang, Zhenhua & Wu, Qiang & Fan, Bihang & Zheng, Xurong & Zhang, Jinzhu & Li, Wenhao & Guo, Li, 2019. "Effects of mulching biodegradable films under drip irrigation on soil hydrothermal conditions and cotton (Gossypium hirsutum L.) yield," Agricultural Water Management, Elsevier, vol. 213(C), pages 477-485.
    10. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Zhen LIU & Kai SUN & Bin ZHENG & Qingling DONG & Geng LI & Huifang HAN & Zengjia LI & Tangyuan NING, 2019. "Impacts of straw, biogas slurry, manure and mineral fertilizer applications on several biochemical properties and crop yield in a wheat-maize cropping system," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(1), pages 1-8.
    12. Jia, Qianmin & Sun, Lefeng & Ali, Shahzad & Zhang, Yan & Liu, Donghua & Kamran, Muhammad & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong, 2018. "Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 202(C), pages 19-32.
    13. Dutta, S. K & Laing, Alison M. & Kumar, S. & Gathala, Mahesh K. & Singh, Ajoy K. & Gaydon, D.S. & Poulton, P., 2020. "Improved water management practices improve cropping system profitability and smallholder farmers’ incomes," Agricultural Water Management, Elsevier, vol. 242(C).
    14. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    15. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    16. Li-fang Wang & Juan Chen & Zhou-ping Shangguan, 2015. "Yield Responses of Wheat to Mulching Practices in Dryland Farming on the Loess Plateau," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    17. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    18. Li, Wenlong & Han, Xiaozhuo & Zhang, Yanyu & Li, Zizhen, 2007. "Effects of elevated CO2 concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas," Agricultural Water Management, Elsevier, vol. 87(1), pages 106-114, January.
    19. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    20. Nazemi Rafi, Zahra & Kazemi, Fatemeh & Tehranifar, Ali, 2019. "Effects of various irrigation regimes on water use efficiency and visual quality of some ornamental herbaceous plants in the field," Agricultural Water Management, Elsevier, vol. 212(C), pages 78-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:230:y:2020:i:c:s0378377419313289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.