IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i10p6213-d819850.html
   My bibliography  Save this article

Comparison of Brazilian Social Interest Housing Projects Considering Sustainability

Author

Listed:
  • Paulo Cezar Vitorio Junior

    (Graduate Program in Civil Engineering, Federal University of Technology—Paraná, Via do Conhecimento, Km 1, Pato Branco 85503-390, PR, Brazil)

  • Víctor Yepes

    (Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain)

  • Moacir Kripka

    (Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Km 292, BR 285, Passo Fundo 99052-900, RS, Brazil)

Abstract

Considering the importance of the development of new housing projects, the purpose of this research is to provide a model oriented to the identification of the most sustainable alternative in single-family housing projects of social interest from the perspective of life cycle thinking (LCT) and the analytical hierarchical process (AHP). A ceramic masonry project and a concrete masonry project were evaluated. In the environmental dimension, the results showed that the ceramic masonry project had more significant environmental impacts and greater damage to human health and the availability of resources and ecosystems. In the social dimension, it was found that there are discrepancies between the salaries in the construction supply chain and that the concrete masonry project had better social characteristics than the ceramic masonry project. The economic dimension revealed that the concrete masonry project was more attractive. Relating the environmental, social, and economic dimensions’ results, through the combination of LCT and AHP, it was found that the concrete masonry project presented a combination of more sustainable characteristics than the ceramic masonry project in the majority of the results. Among the implications of the study carried out here is the advancement of sustainability applied to the construction sector.

Suggested Citation

  • Paulo Cezar Vitorio Junior & Víctor Yepes & Moacir Kripka, 2022. "Comparison of Brazilian Social Interest Housing Projects Considering Sustainability," IJERPH, MDPI, vol. 19(10), pages 1-21, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:6213-:d:819850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/10/6213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/10/6213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julio Vieira Neto & José Rodrigues De Farias Filho, 2013. "Sustainability in the civil construction industry: an exploratory study of life cycle analysis methods," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 16(5/6), pages 420-436.
    2. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    3. Xiaer Xiahou & Yuchun Tang & Jingfeng Yuan & Tengyuan Chang & Ping Liu & Qiming Li, 2018. "Evaluating Social Performance of Construction Projects: An Empirical Study," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    4. Ahmad Faiz Abd Rashid & Juferi Idris & Sumiani Yusoff, 2017. "Environmental Impact Analysis on Residential Building in Malaysia Using Life Cycle Assessment," Sustainability, MDPI, vol. 9(3), pages 1-15, February.
    5. Bruno Peuportier, 2008. "Life Cycle Assessment applications in the building sector," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 9(4), pages 334-347.
    6. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    7. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    8. Helena Gervasio & Silvia Dimova & Artur Pinto, 2018. "Benchmarking the Life-Cycle Environmental Performance of Buildings," Sustainability, MDPI, vol. 10(5), pages 1-30, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Montalbán-Domingo & Madeleine Aguilar-Morocho & Tatiana García-Segura & Eugenio Pellicer, 2020. "Study of Social and Environmental Needs for the Selection of Sustainable Criteria in the Procurement of Public Works," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    2. Leslie Ayagapin & Jean Philippe Praene & Doorgeshwaree Jaggeshar & Dinesh Surroop, 2021. "Prospective Life Cycle Assessment: Effect of Electricity Decarbonization in Building Sector," Energies, MDPI, vol. 14(11), pages 1-17, May.
    3. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    4. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    5. Tilmann Rave, 2013. "Innovation Indicators on Global Climate Change – R&D Expenditure and Patents," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    6. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    7. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    8. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    9. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    10. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    11. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    12. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    13. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    14. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    15. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    16. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    17. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    18. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    19. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    20. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:6213-:d:819850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.