IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i20p10998-d660018.html
   My bibliography  Save this article

Effect of Short-Term Low-Nitrogen Addition on Carbon, Nitrogen and Phosphorus of Vegetation-Soil in Alpine Meadow

Author

Listed:
  • Zhen’an Yang

    (Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong 637009, China)

  • Wei Zhan

    (Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)

  • Lin Jiang

    (Institute of Environment and Ecology, Shandong Normal University, Ji’nan 250358, China)

  • Huai Chen

    (Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)

Abstract

As one of the nitrogen (N) limitation ecosystems, alpine meadows have significant effects on their structure and function. However, research on the response and linkage of vegetation-soil to short-term low-level N deposition with rhizosphere processes is scant. We conducted a four level N addition (0, 20, 40, and 80 kg N ha − 1 y −1 ) field experiment in an alpine meadow on the Qinghai-Tibetan Plateau (QTP) from July 2014 to August 2016. We analyzed the community characteristics, vegetation (shoots and roots), total carbon (TC), nutrients, soil (rhizosphere and bulk) properties, and the linkage between vegetation and soil under different N addition rates. Our results showed that (i) N addition significantly increased and decreased the concentration of soil nitrate nitrogen (NO 3 − -N) and ammonium nitrogen, and the soil pH, respectively; (ii) there were significant correlations between soil (rhizosphere and bulk) NO 3 − -N and total nitrogen (TN), and root TN, and there was no strong correlation between plant and soil TC, TN and total phosphorus, and their stoichiometry under different N addition rates. The results suggest that short-term low-N addition affected the plant community, vegetation, and soil TC, TN, TP, and their stoichiometry insignificantly, and that the correlation between plant and soil TC, TN, and TP, and their stoichiometry were insignificant.

Suggested Citation

  • Zhen’an Yang & Wei Zhan & Lin Jiang & Huai Chen, 2021. "Effect of Short-Term Low-Nitrogen Addition on Carbon, Nitrogen and Phosphorus of Vegetation-Soil in Alpine Meadow," IJERPH, MDPI, vol. 18(20), pages 1-13, October.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:20:p:10998-:d:660018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/20/10998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/20/10998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuejun Liu & Ying Zhang & Wenxuan Han & Aohan Tang & Jianlin Shen & Zhenling Cui & Peter Vitousek & Jan Willem Erisman & Keith Goulding & Peter Christie & Andreas Fangmeier & Fusuo Zhang, 2013. "Enhanced nitrogen deposition over China," Nature, Nature, vol. 494(7438), pages 459-462, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Wesenbeeck, C.F.A. & Keyzer, M.A. & van Veen, W.C.M. & Qiu, H., 2021. "Can China's overuse of fertilizer be reduced without threatening food security and farm incomes?," Agricultural Systems, Elsevier, vol. 190(C).
    2. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    3. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    4. Syed Ayyaz Javed & Muhammad Saleem Arif & Sher Muhammad Shahzad & Muhammad Ashraf & Rizwana Kausar & Taimoor Hassan Farooq & M. Iftikhar Hussain & Awais Shakoor, 2021. "Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply?," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    5. Khor, Ling & Zeller, Manfred, 2015. "Perception of Substandard Fertilizer and Its Impact on Use Intensity," 2015 Conference, August 9-14, 2015, Milan, Italy 211843, International Association of Agricultural Economists.
    6. Rosalina Armando Tamele & Hideto Ueno & Yo Toma & Nobuki Morita, 2020. "Nitrogen Recoveries and Nitrogen Use Efficiencies of Organic Fertilizers with Different C/N Ratios in Maize Cultivation with Low-Fertile Soil by 15 N Method," Agriculture, MDPI, vol. 10(7), pages 1-13, July.
    7. Ke Xu & Chunmei Wang & Xintong Yang, 2017. "Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
    8. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    10. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Mirhaj, M. & Razzak, M.A. & Wahab, M.A., 2014. "Comparison of nitrogen balances and efficiencies in rice cum prawn vs. rice cum fish cultures in Mymensingh, North-Eastern Bangladesh," Agricultural Systems, Elsevier, vol. 125(C), pages 54-62.
    12. Francisco J. Areal & Wantao Yu & Kevin Tansey & Jiahuan Liu, 2022. "Measuring Sustainable Intensification Using Satellite Remote Sensing Data," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    13. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Yan, Peng & Yang, Xiaolei & Gao, Wangsheng, 2017. "Preliminary analysis on economic and environmental consequences of grain production on different farm sizes in North China Plain," Agricultural Systems, Elsevier, vol. 153(C), pages 181-189.
    14. Xue Meng & Zhiguo Zhu & Jing Xue & Chunguang Wang & Xiaoxin Sun, 2023. "Methane and Nitrous Oxide Emissions from a Temperate Peatland under Simulated Enhanced Nitrogen Deposition," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    15. Zhang, Guo & Wang, Xiaoke & Sun, Binfeng & Zhao, Hong & Lu, Fei & Zhang, Lu, 2016. "Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland," Agricultural Systems, Elsevier, vol. 146(C), pages 1-10.
    16. Longyu Shi & Miao Zhang & Yajing Zhang & Bin Yang & Huaping Sun & Tong Xu, 2018. "Comprehensive Analysis of Nitrogen Deposition in Urban Ecosystem: A Case Study of Xiamen City, China," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    17. Baozhi Li & Bin Guo & Qibiao Zhu & Ni Zhuo, 2023. "Impact of Technical Training and Personalized Information Support on Farmers’ Fertilization Behavior: Evidence from China," Sustainability, MDPI, vol. 15(11), pages 1-11, June.
    18. Liu, Jiaxin & Li, Yan & Zheng, Yiming & Tong, Sijie & Zhang, Xuechen & Zhao, Ying & Zheng, Wei & Zhai, Bingnian & Wang, Zhaohui & Zhang, Xucheng & Li, Ziyan & Zamanian, Kazem, 2022. "The spatial and temporal distribution of nitrogen flow in the agricultural system and green development assessment of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Tianjie Lei & Jianjun Wu & Jiabao Wang & Changliang Shao & Weiwei Wang & Dongpan Chen & Xiangyu Li, 2022. "The Net Influence of Drought on Grassland Productivity over the Past 50 Years," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    20. Zehui Liu & Harald E. Rieder & Christian Schmidt & Monika Mayer & Yixin Guo & Wilfried Winiwarter & Lin Zhang, 2023. "Optimal reactive nitrogen control pathways identified for cost-effective PM2.5 mitigation in Europe," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:20:p:10998-:d:660018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.