IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i10p5248-d554947.html
   My bibliography  Save this article

The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa

Author

Listed:
  • Koketso J. Setshedi

    (Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa)

  • Nhamo Mutingwende

    (Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa)

  • Nosiphiwe P. Ngqwala

    (Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa)

Abstract

Reliable prediction of water quality changes is a prerequisite for early water pollution control and is vital in environmental monitoring, ecosystem sustainability, and human health. This study uses Artificial Neural Network (ANN) technique to develop the best model fits to predict water quality parameters by employing multilayer perceptron (MLP) neural network and the radial basis function (RBF) neural network, using data collected from three district municipalities. Two input combination models, MLP-4-5-4 and MLP-4-9-4, were trained, verified, and tested for their predictive performance ability, and their physicochemical prediction accuracy was compared by using each model’s observed data with the predicted data. The MLP-4-5-4 model showed a better understanding of the data sets and water quality predictive ability giving an MSE of 39.06589 and a correlation coefficient (R 2 ) of the observed and the predicted water quality of 0.989383 compared to the MLP-4-9-4 model (R 2 = 0.993532, MSE = 39.03087). These results apply to natural water resources management in South Africa and similar catchment systems. The MLP-4-5-4 system can be scaled up for future water quality prediction of the Waste Water Treatment Plants (WWTPs), groundwater, and surface water while raising awareness among the public and industry on future water quality.

Suggested Citation

  • Koketso J. Setshedi & Nhamo Mutingwende & Nosiphiwe P. Ngqwala, 2021. "The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa," IJERPH, MDPI, vol. 18(10), pages 1-17, May.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5248-:d:554947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/10/5248/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/10/5248/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arora, Siddharth & Taylor, James W., 2018. "Rule-based autoregressive moving average models for forecasting load on special days: A case study for France," European Journal of Operational Research, Elsevier, vol. 266(1), pages 259-268.
    2. Yashon O. Ouma & Clinton O. Okuku & Evalyne N. Njau, 2020. "Use of Artificial Neural Networks and Multiple Linear Regression Model for the Prediction of Dissolved Oxygen in Rivers: Case Study of Hydrographic Basin of River Nyando, Kenya," Complexity, Hindawi, vol. 2020, pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesmeen Mohd Zebaral Hoque & Nor Azlina Ab. Aziz & Salem Alelyani & Mohamed Mohana & Maruf Hosain, 2022. "Improving Water Quality Index Prediction Using Regression Learning Models," IJERPH, MDPI, vol. 19(20), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz Dudek, 2022. "A Comprehensive Study of Random Forest for Short-Term Load Forecasting," Energies, MDPI, vol. 15(20), pages 1-19, October.
    2. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    3. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    4. Fen Yang & Hossein Moayedi & Amir Mosavi, 2021. "Predicting the Degree of Dissolved Oxygen Using Three Types of Multi-Layer Perceptron-Based Artificial Neural Networks," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    5. Óscar Trull & J. Carlos García-Díaz & Alicia Troncoso, 2019. "Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter," Energies, MDPI, vol. 12(6), pages 1-16, March.
    6. Emma Viviani & Luca Di Persio & Matthias Ehrhardt, 2021. "Energy Markets Forecasting. From Inferential Statistics to Machine Learning: The German Case," Energies, MDPI, vol. 14(2), pages 1-33, January.
    7. Jie Zhu & Buxiang Zhou & Yiwei Qiu & Tianlei Zang & Yi Zhou & Shi Chen & Ningyi Dai & Huan Luo, 2023. "Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems," Energies, MDPI, vol. 16(16), pages 1-19, August.
    8. Milad Bagheri & Zelina Z. Ibrahim & Mohd Fadzil Akhir & Bahareh Oryani & Shahabaldin Rezania & Isabelle D. Wolf & Amin Beiranvand Pour & Wan Izatul Asma Wan Talaat, 2021. "Impacts of Future Sea-Level Rise under Global Warming Assessed from Tide Gauge Records: A Case Study of the East Coast Economic Region of Peninsular Malaysia," Land, MDPI, vol. 10(12), pages 1-24, December.
    9. Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
    10. Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2019. "Classification of Special Days in Short-Term Load Forecasting: The Spanish Case Study," Energies, MDPI, vol. 12(7), pages 1-31, April.
    11. Mobarak Abumohsen & Amani Yousef Owda & Majdi Owda, 2023. "Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms," Energies, MDPI, vol. 16(5), pages 1-31, February.
    12. Behm, Svenia & Haupt, Harry, 2020. "Predictability of hourly nitrogen dioxide concentration," Ecological Modelling, Elsevier, vol. 428(C).
    13. Jiang, Ping & Li, Ranran & Liu, Ningning & Gao, Yuyang, 2020. "A novel composite electricity demand forecasting framework by data processing and optimized support vector machine," Applied Energy, Elsevier, vol. 260(C).
    14. Yashon O. Ouma & Ditiro B. Moalafhi & George Anderson & Boipuso Nkwae & Phillimon Odirile & Bhagabat P. Parida & Jiaguo Qi, 2022. "Dam Water Level Prediction Using Vector AutoRegression, Random Forest Regression and MLP-ANN Models Based on Land-Use and Climate Factors," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    15. Wang, Qiang & Li, Shuyu & Li, Rongrong & Ma, Minglu, 2018. "Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model," Energy, Elsevier, vol. 160(C), pages 378-387.
    16. Dai, Yeming & Yang, Xinyu & Leng, Mingming, 2022. "Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    17. Trull, Oscar & García-Díaz, J. Carlos & Troncoso, Alicia, 2021. "One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities," Energy, Elsevier, vol. 231(C).
    18. Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
    19. Daniel Osezua Aikhuele & Ayodele A. Periola & Elijah Aigbedion & Herold U. Nwosu, 2022. "Intelligent and Data-Driven Reliability Evaluation Model for Wind Turbine Blades," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 11(1), pages 1-20, January.
    20. Diego Galvan & Luciane Effting & Hágata Cremasco & Carlos Adam Conte-Junior, 2020. "Can Socioeconomic, Health, and Safety Data Explain the Spread of COVID-19 Outbreak on Brazilian Federative Units?," IJERPH, MDPI, vol. 17(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5248-:d:554947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.