IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1382-d702064.html
   My bibliography  Save this article

Impacts of Future Sea-Level Rise under Global Warming Assessed from Tide Gauge Records: A Case Study of the East Coast Economic Region of Peninsular Malaysia

Author

Listed:
  • Milad Bagheri

    (Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia)

  • Zelina Z. Ibrahim

    (Department of Environment, Faculty of Environmental and Forestry, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia)

  • Mohd Fadzil Akhir

    (Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia)

  • Bahareh Oryani

    (Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • Shahabaldin Rezania

    (Department of Environment and Energy, Sejong University, Seoul 05006, Korea)

  • Isabelle D. Wolf

    (School of Geography and Sustainable Communities, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
    Centre for Ecosystem Science, University of New South Wales, Sydney, NSW 2052, Australia)

  • Amin Beiranvand Pour

    (Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia)

  • Wan Izatul Asma Wan Talaat

    (Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia)

Abstract

The effects of global warming are putting the world’s coasts at risk. Coastal planners need relatively accurate projections of the rate of sea-level rise and its possible consequences, such as extreme sea-level changes, flooding, and coastal erosion. The east coast of Peninsular Malaysia is vulnerable to sea-level change. The purpose of this study is to present an Artificial Neural Network (ANN) model to analyse sea-level change based on observed data of tide gauge, rainfall, sea level pressure, sea surface temperature, and wind. A Feed-forward Neural Network (FNN) approach was used on observed data from 1991 to 2012 to simulate and predict the sea level change until 2020 from five tide gauge stations in Kuala Terengganu along the East Coast of Malaysia. From 1991 to 2020, predictions estimate that sea level would increase at a pace of roughly 4.60 mm/year on average, with a rate of 2.05 ± 7.16 mm on the East Coast of Peninsular Malaysia. This study shows that Peninsular Malaysia’s East Coast is vulnerable to sea-level rise, particularly at Kula Terengganu, Terengganu state, with a rate of 1.38 ± 7.59 mm/year, and Tanjung Gelang, Pahang state, with a rate of 1.87 ± 7.33 mm/year. As a result, strategies and planning for long-term adaptation are needed to control potential consequences. Our research provides crucial information for decision-makers seeking to protect coastal cities from the risks of rising sea levels.

Suggested Citation

  • Milad Bagheri & Zelina Z. Ibrahim & Mohd Fadzil Akhir & Bahareh Oryani & Shahabaldin Rezania & Isabelle D. Wolf & Amin Beiranvand Pour & Wan Izatul Asma Wan Talaat, 2021. "Impacts of Future Sea-Level Rise under Global Warming Assessed from Tide Gauge Records: A Case Study of the East Coast Economic Region of Peninsular Malaysia," Land, MDPI, vol. 10(12), pages 1-24, December.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1382-:d:702064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tasadduq, Imran & Rehman, Shafiqur & Bubshait, Khaled, 2002. "Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia," Renewable Energy, Elsevier, vol. 25(4), pages 545-554.
    2. Yashon O. Ouma & Clinton O. Okuku & Evalyne N. Njau, 2020. "Use of Artificial Neural Networks and Multiple Linear Regression Model for the Prediction of Dissolved Oxygen in Rivers: Case Study of Hydrographic Basin of River Nyando, Kenya," Complexity, Hindawi, vol. 2020, pages 1-23, May.
    3. Olivencia Polo, Fernando A. & Ferrero Bermejo, Jesús & Gómez Fernández, Juan F. & Crespo Márquez, Adolfo, 2015. "Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models," Renewable Energy, Elsevier, vol. 81(C), pages 227-238.
    4. Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvador García-Ayllón & Francisco Gómez & Francesco Bianco, 2022. "Analysis of the Spatial Correlation between Port Areas Configuration and Alterations of the Coastal Shoreline: A Multidisciplinary Approach Using Spatiotemporal GIS Indicators," Land, MDPI, vol. 11(10), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peters, Lennart & Madlener, Reinhard, 2017. "Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants," Applied Energy, Elsevier, vol. 199(C), pages 264-280.
    2. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    3. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    4. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    5. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    6. Yu-Chung Tsao & Thuy-Linh Vu, 2023. "Electricity pricing, capacity, and predictive maintenance considering reliability," Annals of Operations Research, Springer, vol. 322(2), pages 991-1011, March.
    7. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    8. Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
    9. Deihimi, Ali & Showkati, Hemen, 2012. "Application of echo state networks in short-term electric load forecasting," Energy, Elsevier, vol. 39(1), pages 327-340.
    10. Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
    11. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    12. Wang, Jing-Yi & Qian, Zheng & Zareipour, Hamidreza & Wood, David, 2018. "Performance assessment of photovoltaic modules based on daily energy generation estimation," Energy, Elsevier, vol. 165(PB), pages 1160-1172.
    13. Fateme Dinmohammadi & Yuxuan Han & Mahmood Shafiee, 2023. "Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms," Energies, MDPI, vol. 16(9), pages 1-23, April.
    14. Fen Yang & Hossein Moayedi & Amir Mosavi, 2021. "Predicting the Degree of Dissolved Oxygen Using Three Types of Multi-Layer Perceptron-Based Artificial Neural Networks," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    15. Adolfo Crespo Márquez & Antonio de la Fuente Carmona & Sara Antomarioni, 2019. "A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency," Energies, MDPI, vol. 12(18), pages 1-25, September.
    16. Alexey I. Shinkevich & Tatiana V. Malysheva & Yulia V. Vertakova & Vladimir A. Plotnikov, 2021. "Optimization of Energy Consumption in Chemical Production Based on Descriptive Analytics and Neural Network Modeling," Mathematics, MDPI, vol. 9(4), pages 1-20, February.
    17. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
    18. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.
    20. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1382-:d:702064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.