IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3315-d1686374.html
   My bibliography  Save this article

Leveraging Machine Learning in Next-Generation Climate Change Adaptation Efforts by Increasing Renewable Energy Integration and Efficiency

Author

Listed:
  • Izabela Rojek

    (Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

  • Dariusz Mikołajewski

    (Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

  • Marek Andryszczyk

    (Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

  • Tomasz Bednarek

    (Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

  • Krzysztof Tyburek

    (Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

Abstract

This article examines the growing role of machine learning (ML) in promoting next-generation climate change adaptation through the improved integration and performance of renewable energy systems. As climate change accelerates, innovative solutions are urgently needed to enhance the resilience and sustainability of energy infrastructure.ML offers powerful capabilities to handle complex data sets, forecast energy supply and demand, and optimize grid operations. This review highlights key applications of ML, such as predictive maintenance, intelligent grid management, and the real-time optimization of renewable energy resources. It also examines current challenges, including data availability, model transparency, and the need for interdisciplinary collaboration, both in technology development and policy and regulation. By synthesizing recent research and case studies, thisarticle shows how ML can significantly improve the performance, reliability, and scalability of renewable energy systems. This review emphasizes the importance of aligning technological advances with policy and infrastructure development. Successful implementation requires not only ensuring technological capabilities (robust infrastructure, structured data sets, and interdisciplinary collaboration) but also the careful consideration and alignment of ethical and regulatory factors from strategic to regional and local levels. Machine learning is becoming a key enabler for the transition to more adaptive, efficient, and low-carbon energy systems in response to climate change.

Suggested Citation

  • Izabela Rojek & Dariusz Mikołajewski & Marek Andryszczyk & Tomasz Bednarek & Krzysztof Tyburek, 2025. "Leveraging Machine Learning in Next-Generation Climate Change Adaptation Efforts by Increasing Renewable Energy Integration and Efficiency," Energies, MDPI, vol. 18(13), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3315-:d:1686374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuan-Kien Mai & Jun-Yeop Lee & Jae-In Lee & Byeong-Soo Go & Seok-Ju Lee & Minh-Chau Dinh, 2025. "Design of an Efficient Deep Learning-Based Diagnostic Model for Wind Turbine Gearboxes Using SCADA Data," Energies, MDPI, vol. 18(11), pages 1-19, May.
    2. Lee, Chien-Chiang & Wang, Fuhao & Chang, Yu-Fang, 2023. "Towards net-zero emissions: Can green bond policy promote green innovation and green space?," Energy Economics, Elsevier, vol. 121(C).
    3. Shi, Zhongtuo & Yao, Wei & Zeng, Lingkang & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Convolutional neural network-based power system transient stability assessment and instability mode prediction," Applied Energy, Elsevier, vol. 263(C).
    4. Sergiusz Pimenow & Olena Pimenowa & Piotr Prus, 2024. "Challenges of Artificial Intelligence Development in the Context of Energy Consumption and Impact on Climate Change," Energies, MDPI, vol. 17(23), pages 1-34, November.
    5. Billio, Monica & Casarin, Roberto & Costola, Michele & Veggente, Veronica, 2024. "Learning from experts: Energy efficiency in residential buildings," Energy Economics, Elsevier, vol. 136(C).
    6. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    7. Nimisha Pandey & Heleen de Coninck & Ambuj D Sagar, 2022. "Beyond technology transfer: Innovation cooperation to advance sustainable development in developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
    8. Irene Arcelay & Aitor Goti & Aitor Oyarbide-Zubillaga & Tugce Akyazi & Elisabete Alberdi & Pablo Garcia-Bringas, 2021. "Definition of the Future Skills Needs of Job Profiles in the Renewable Energy Sector," Energies, MDPI, vol. 14(9), pages 1-23, May.
    9. Ke Zhao & Chao Wu & Jinquan Liu & Yongfu Liu, 2024. "Green Finance, Green Technology Innovation and the Upgrading of China’s Industrial Structure: A Study from the Perspective of Heterogeneous Environmental Regulation," Sustainability, MDPI, vol. 16(11), pages 1-17, May.
    10. Kingsley Ukoba & Kehinde O. Olatunji & Eyitayo Adeoye & Tien-Chien Jen & Daniel M. Madyira, 2024. "Optimizing renewable energy systems through artificial intelligence: Review and future prospects," Energy & Environment, , vol. 35(7), pages 3833-3879, November.
    11. Zhang, Guiqing & Tian, Chenlu & Li, Chengdong & Zhang, Jun Jason & Zuo, Wangda, 2020. "Accurate forecasting of building energy consumption via a novel ensembled deep learning method considering the cyclic feature," Energy, Elsevier, vol. 201(C).
    12. Tiwari, Aviral Kumar & Trabelsi, Nader & Abakah, Emmanuel Joel Aikins & Nasreen, Samia & Lee, Chien-Chiang, 2023. "An empirical analysis of the dynamic relationship between clean and dirty energy markets," Energy Economics, Elsevier, vol. 124(C).
    13. Hanane Thamik & Jiang Wu, 2022. "The Impact of Artificial Intelligence on Sustainable Development in Electronic Markets," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    14. Hui Huang & Shilin Nie & Jin Lin & Yuanyuan Wang & Jun Dong, 2020. "Optimization of Peer-to-Peer Power Trading in a Microgrid with Distributed PV and Battery Energy Storage Systems," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    15. Paweł Gładysz & Magdalena Strojny & Łukasz Bartela & Maciej Hacaga & Thomas Froehlich, 2022. "Merging Climate Action with Energy Security through CCS—A Multi-Disciplinary Framework for Assessment," Energies, MDPI, vol. 16(1), pages 1-28, December.
    16. Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
    17. Patrizia Ghisellini & Renato Passaro & Sergio Ulgiati, 2025. "Is Green Hydrogen an Environmentally and Socially Sound Solution for Decarbonizing Energy Systems Within a Circular Economy Transition?," Energies, MDPI, vol. 18(11), pages 1-55, May.
    18. Hussain, Muhammed & Dhimish, Mahmoud & Titarenko, Sofya & Mather, Peter, 2020. "Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters," Renewable Energy, Elsevier, vol. 155(C), pages 1272-1292.
    19. Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
    20. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mir Sayed Shah Danish, 2023. "AI and Expert Insights for Sustainable Energy Future," Energies, MDPI, vol. 16(8), pages 1-27, April.
    2. Husain, Afzol & Karim, Sitara & Sensoy, Ahmet, 2024. "Financial fusion: Bridging Islamic and Green investments in the European stock market," International Review of Financial Analysis, Elsevier, vol. 94(C).
    3. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    4. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    5. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    6. Pan, Yinghao & Zhang, Chao-Chao & Lee, Chien-Chiang & Lv, Suxiang, 2024. "Environmental performance evaluation of electric enterprises during a power crisis: Evidence from DEA methods and AI prediction algorithms," Energy Economics, Elsevier, vol. 130(C).
    7. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    8. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    9. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    10. Zhang, Zuomin & Wu, Yingjue & Wang, Honglei, 2024. "Corporate financial fragility, R&D investment, and corporate green innovation: Evidence from China," Finance Research Letters, Elsevier, vol. 62(PB).
    11. Qiu, Zhaoxuan & Li, Jincheng & Liu, Bei & Jin, Meilin & Wang, Jinmin, 2025. "How does energy quota trading affect the corporate pollution gap? Evidence from China," Economic Modelling, Elsevier, vol. 146(C).
    12. Ágota Bányai & Tamás Bányai, 2022. "Real-Time Maintenance Policy Optimization in Manufacturing Systems: An Energy Efficiency and Emission-Based Approach," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    13. Anna Borkovcová & Miloslava Černá & Marcela Sokolová, 2022. "Blockchain in the Energy Sector—Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    14. Li, Changsong & Cao, Xiaojing & Wang, Zeyu & Zhang, Jiali & Liu, Huan, 2025. "The impact of green bond issuance on corporate green innovation: A signaling perspective," International Review of Financial Analysis, Elsevier, vol. 102(C).
    15. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    16. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    17. Yahya, Farzan & Lee, Chien-Chiang, 2023. "Disentangling the asymmetric effect of financialization on the green output gap," Energy Economics, Elsevier, vol. 125(C).
    18. Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    19. Huimin Wang & Zhaojun Steven Li, 2022. "An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems," Journal of Risk and Reliability, , vol. 236(3), pages 495-507, June.
    20. Zhao, Xiaoyu & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Hu, Jinxue & Zhang, Chenyang & Yuan, Xiaoyang, 2025. "A probabilistic load forecasting method for multi-energy loads based on inflection point optimization and integrated feature screening," Energy, Elsevier, vol. 327(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3315-:d:1686374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.