IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2814-d1666801.html
   My bibliography  Save this article

Design of an Efficient Deep Learning-Based Diagnostic Model for Wind Turbine Gearboxes Using SCADA Data

Author

Listed:
  • Xuan-Kien Mai

    (Department of Electrical Engineering, Changwon National University, Changwon 51140, Republic of Korea)

  • Jun-Yeop Lee

    (Department of Electrical Engineering, Changwon National University, Changwon 51140, Republic of Korea)

  • Jae-In Lee

    (Institute of Mechatronics, Changwon National University, Changwon 51140, Republic of Korea)

  • Byeong-Soo Go

    (Institute of Mechatronics, Changwon National University, Changwon 51140, Republic of Korea)

  • Seok-Ju Lee

    (School of Aerospace Engineering, Glocal Advanced Institute of Science & Technology, Changwon National University, Changwon 51140, Republic of Korea)

  • Minh-Chau Dinh

    (Institute of Mechatronics, Changwon National University, Changwon 51140, Republic of Korea)

Abstract

Global efforts to address climate change have intensified the transition from fossil fuels to renewable energy sources, positioning wind power as a critical player due to its advanced technology, scalability, and environmental benefits. Despite their potential, the reliability of wind turbines, particularly their gearboxes, remains a persistent challenge. Gearbox failures lead to significant downtime, high maintenance costs, and reduced operational efficiency, threatening the economic competitiveness of wind energy. This study proposes an innovative condition monitoring model for wind turbine gearboxes, utilizing Supervisory Control and Data Acquisition systems and Deep Learning techniques. The model analyzes historical operating data from wind turbine to classify gearbox conditions into normal and abnormal states. Optimizing the dataset for deep neural networks through advanced data processing methods achieves an impressive fault detection accuracy of 98.8%. Designed for seamless integration into real-time monitoring systems, this approach enables early fault prediction and supports proactive maintenance strategies. By enhancing gearbox reliability, reducing unplanned downtime, and lowering maintenance expenses, the model improves the overall economic viability of wind farms. This advancement reinforces wind energy’s pivotal role in driving a sustainable, low-carbon future, aligning with global climate goals and renewable energy adoption.

Suggested Citation

  • Xuan-Kien Mai & Jun-Yeop Lee & Jae-In Lee & Byeong-Soo Go & Seok-Ju Lee & Minh-Chau Dinh, 2025. "Design of an Efficient Deep Learning-Based Diagnostic Model for Wind Turbine Gearboxes Using SCADA Data," Energies, MDPI, vol. 18(11), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2814-:d:1666801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2814/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2814/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
    2. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    3. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    2. Mohamed A. Alarabi & Sedat Sünter, 2025. "ANN-Based Maximum Power Tracking for a Grid-Synchronized Wind Turbine-Driven Doubly Fed Induction Generator Fed by Matrix Converter," Energies, MDPI, vol. 18(10), pages 1-26, May.
    3. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    4. Ali Fayazi & Hossein Ghayoumi Zadeh & Hossein Ahmadian & Mahdi Ghane & Omid Rahmani Seryasat, 2024. "Pitch Actuator Fault-Tolerant Control of Wind Turbines via an L 1 Adaptive Sliding Mode Control ( SMC ) Scheme," Energies, MDPI, vol. 17(16), pages 1-20, August.
    5. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    6. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    7. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    8. Becky Corley & Sofia Koukoura & James Carroll & Alasdair McDonald, 2021. "Combination of Thermal Modelling and Machine Learning Approaches for Fault Detection in Wind Turbine Gearboxes," Energies, MDPI, vol. 14(5), pages 1-14, March.
    9. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    10. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    11. Yolanda Vidal & Francesc Pozo & Christian Tutivén, 2018. "Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data," Energies, MDPI, vol. 11(11), pages 1-18, November.
    12. Emilia Miszewska & Maciej Niedostatkiewicz & Radosław Wiśniewski, 2023. "Sustainable Development of Water Housing Using the Example of Poland: An Analysis of Scenarios," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    13. Peng Guo & Jian Fu & XiYun Yang, 2018. "Condition Monitoring and Fault Diagnosis of Wind Turbines Gearbox Bearing Temperature Based on Kolmogorov-Smirnov Test and Convolutional Neural Network Model," Energies, MDPI, vol. 11(9), pages 1-16, August.
    14. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    15. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    16. Fernando Manuel Carvalho da Silva Santos & Leonardo Elizeire Bremermann & Tadeu Da Mata Medeiros Branco & Diego Issicaba & Mauro Augusto da Rosa, 2018. "Impact Evaluation of Wind Power Geographic Dispersion on Future Operating Reserve Needs," Energies, MDPI, vol. 11(11), pages 1-13, October.
    17. Furness, Robert W. & Furness, Euan N., 2025. "Strategic seaweed farming to support protected seabirds impacted by offshore windfarms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    18. Ruiming, Fang & Minling, Wu & xinhua, Guo & Rongyan, Shang & Pengfei, Shao, 2020. "Identifying early defects of wind turbine based on SCADA data and dynamical network marker," Renewable Energy, Elsevier, vol. 154(C), pages 625-635.
    19. Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    20. Yue Li & Yanghong Xia & Yini Ni & Yonggang Peng & Qifan Feng, 2023. "Transient Stability Analysis for Grid-Forming VSCs Based on Nonlinear Decoupling Method," Sustainability, MDPI, vol. 15(15), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2814-:d:1666801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.