IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2521-d1655018.html
   My bibliography  Save this article

ANN-Based Maximum Power Tracking for a Grid-Synchronized Wind Turbine-Driven Doubly Fed Induction Generator Fed by Matrix Converter

Author

Listed:
  • Mohamed A. Alarabi

    (Electrical and Electronics Engineering Department, Atilim University, Ankara 06830, Türkiye)

  • Sedat Sünter

    (Electrical and Electronics Engineering Department, Atilim University, Ankara 06830, Türkiye)

Abstract

The integration of renewable energy sources, such as wind power, into the electrical grid is essential for the development of sustainable energy systems. Doubly fed induction generators (DFIGs) have been significantly utilized in wind energy conversion systems (WECSs) because of their efficient power generation and variable speed operation. However, optimizing wind power extraction at variable wind speeds remains a major challenge. To address this, an artificial neural network (ANN) is adopted to predict the optimal shaft speed, ensuring maximum power point tracking (MPPT) for a wind energy-driven DFIG connected to a matrix converter (MC). The DFIG is controlled via field-oriented control (FOC), which allows independent power output regulation and separately controls the stator active and reactive power components. Through its compact design, bidirectional power flow, and enhanced harmonic performance, the MC, which is controlled by the simplified Venturini modulation technique, improves the efficiency and dependability of the system. Simulation outcomes confirm that the ANN-based MPPT enhances the power extraction efficiency and improves the system performance. This study shows how wind energy systems can be optimized for smart grids by integrating advanced control techniques like FOC and simplified Venturini modulation with intelligent algorithms like ANN.

Suggested Citation

  • Mohamed A. Alarabi & Sedat Sünter, 2025. "ANN-Based Maximum Power Tracking for a Grid-Synchronized Wind Turbine-Driven Doubly Fed Induction Generator Fed by Matrix Converter," Energies, MDPI, vol. 18(10), pages 1-26, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2521-:d:1655018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuan Chau Le & Minh Quan Duong & Kim Hung Le, 2022. "Review of the Modern Maximum Power Tracking Algorithms for Permanent Magnet Synchronous Generator of Wind Power Conversion Systems," Energies, MDPI, vol. 16(1), pages 1-25, December.
    2. Mohamed Zribi & Muthana Alrifai & Mohamed Rayan, 2017. "Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator," Energies, MDPI, vol. 10(5), pages 1-21, May.
    3. Habib Benbouhenni & Nicu Bizon, 2021. "Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System," Mathematics, MDPI, vol. 9(19), pages 1-36, September.
    4. Belqasem Aljafari & Jasmin Pamela Stephenraj & Indragandhi Vairavasundaram & Raja Singh Rassiah, 2022. "Steady State Modeling and Performance Analysis of a Wind Turbine-Based Doubly Fed Induction Generator System with Rotor Control," Energies, MDPI, vol. 15(9), pages 1-19, May.
    5. Mohamed, Amal Z. & Eskander, Mona N. & Ghali, Fadia A., 2001. "Fuzzy logic control based maximum power tracking of a wind energy system," Renewable Energy, Elsevier, vol. 23(2), pages 235-245.
    6. Santiago Arnaltes & Jose Luis Rodriguez-Amenedo & Miguel E. Montilla-DJesus, 2017. "Control of Variable Speed Wind Turbines with Doubly Fed Asynchronous Generators for Stand-Alone Applications," Energies, MDPI, vol. 11(1), pages 1-16, December.
    7. Erdal Bekiroglu & Muhammed Duran Yazar, 2022. "MPPT Control of Grid Connected DFIG at Variable Wind Speed," Energies, MDPI, vol. 15(9), pages 1-19, April.
    8. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Btissam Majout & Houda El Alami & Hassna Salime & Nada Zine Laabidine & Youness El Mourabit & Saad Motahhir & Manale Bouderbala & Mohammed Karim & Badre Bossoufi, 2022. "A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG," Energies, MDPI, vol. 15(17), pages 1-41, August.
    2. Tarak Ghennam & Lakhdar Belhadji & Nassim Rizoug & Bruno Francois & Seddik Bacha, 2024. "A Three-Level Neutral-Point-Clamped Converter Based Standalone Wind Energy Conversion System Controlled with a New Simplified Line-to-Line Space Vector Modulation," Energies, MDPI, vol. 17(9), pages 1-19, May.
    3. Ali Fayazi & Hossein Ghayoumi Zadeh & Hossein Ahmadian & Mahdi Ghane & Omid Rahmani Seryasat, 2024. "Pitch Actuator Fault-Tolerant Control of Wind Turbines via an L 1 Adaptive Sliding Mode Control ( SMC ) Scheme," Energies, MDPI, vol. 17(16), pages 1-20, August.
    4. Ganjefar, Soheil & Ghassemi, Ali Akbar & Ahmadi, Mohamad Mehdi, 2014. "Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network," Energy, Elsevier, vol. 67(C), pages 444-453.
    5. Anto Anbarasu Yesudhas & Young Hoon Joo & Seong Ryong Lee, 2022. "Reference Model Adaptive Control Scheme on PMVG-Based WECS for MPPT under a Real Wind Speed," Energies, MDPI, vol. 15(9), pages 1-17, April.
    6. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    7. Mansoor Soomro & Zubair Ahmed Memon & Mazhar Hussain Baloch & Nayyar Hussain Mirjat & Laveet Kumar & Quynh T. Tran & Gaetano Zizzo, 2023. "Performance Improvement of Grid-Integrated Doubly Fed Induction Generator under Asymmetrical and Symmetrical Faults," Energies, MDPI, vol. 16(8), pages 1-20, April.
    8. Amir Raouf & Kotb B. Tawfiq & Elsayed Tag Eldin & Hossam Youssef & Elwy E. El-Kholy, 2023. "Wind Energy Conversion Systems Based on a Synchronous Generator: Comparative Review of Control Methods and Performance," Energies, MDPI, vol. 16(5), pages 1-22, February.
    9. Habib Benbouhenni & Nicu Bizon & Ilhami Colak & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Simplified Super Twisting Sliding Mode Approaches of the Double-Powered Induction Generator-Based Multi-Rotor Wind Turbine System," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    10. Michał Gwóźdź & Michał Krystkowiak & Łukasz Ciepliński & Ryszard Strzelecki, 2020. "A Wind Energy Conversion System Based on a Generator with Modulated Magnetic Flux," Energies, MDPI, vol. 13(12), pages 1-18, June.
    11. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    12. Erdal Bekiroglu & Muhammed Duran Yazar, 2022. "MPPT Control of Grid Connected DFIG at Variable Wind Speed," Energies, MDPI, vol. 15(9), pages 1-19, April.
    13. Emilia Miszewska & Maciej Niedostatkiewicz & Radosław Wiśniewski, 2023. "Sustainable Development of Water Housing Using the Example of Poland: An Analysis of Scenarios," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    14. Mokhtari, Yacine & Rekioua, Djamila, 2018. "High performance of Maximum Power Point Tracking Using Ant Colony algorithm in wind turbine," Renewable Energy, Elsevier, vol. 126(C), pages 1055-1063.
    15. Billy Muhando, Endusa & Senjyu, Tomonobu & Urasaki, Naomitsu & Yona, Atsushi & Kinjo, Hiroshi & Funabashi, Toshihisa, 2007. "Gain scheduling control of variable speed WTG under widely varying turbulence loading," Renewable Energy, Elsevier, vol. 32(14), pages 2407-2423.
    16. Amirsoheil Honarbari & Sajad Najafi-Shad & Mohsen Saffari Pour & Seyed Soheil Mousavi Ajarostaghi & Ali Hassannia, 2021. "MPPT Improvement for PMSG-Based Wind Turbines Using Extended Kalman Filter and Fuzzy Control System," Energies, MDPI, vol. 14(22), pages 1-16, November.
    17. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    18. Xuan-Kien Mai & Jun-Yeop Lee & Jae-In Lee & Byeong-Soo Go & Seok-Ju Lee & Minh-Chau Dinh, 2025. "Design of an Efficient Deep Learning-Based Diagnostic Model for Wind Turbine Gearboxes Using SCADA Data," Energies, MDPI, vol. 18(11), pages 1-19, May.
    19. Andrés Peña Asensio & Santiago Arnaltes Gómez & Jose Luis Rodriguez-Amenedo & Manuel García Plaza & Joaquín Eloy-García Carrasco & Jaime Manuel Alonso-Martínez de las Morenas, 2018. "A Voltage and Frequency Control Strategy for Stand-Alone Full Converter Wind Energy Conversion Systems," Energies, MDPI, vol. 11(3), pages 1-19, February.
    20. Assareh, Ehsanolah & Biglari, Mojtaba, 2015. "A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1023-1037.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2521-:d:1655018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.