IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2214-d1388575.html
   My bibliography  Save this article

A Three-Level Neutral-Point-Clamped Converter Based Standalone Wind Energy Conversion System Controlled with a New Simplified Line-to-Line Space Vector Modulation

Author

Listed:
  • Tarak Ghennam

    (Laboratoire d’Electronique de Puissance, UER-ELT, Ecole Militaire Polytechnique (EMP), BP 17 Bordj-El-Bahri, Alger 16111, Algeria)

  • Lakhdar Belhadji

    (Laboratoire d’Electronique de Puissance, UER-ELT, Ecole Militaire Polytechnique (EMP), BP 17 Bordj-El-Bahri, Alger 16111, Algeria)

  • Nassim Rizoug

    (Ecole Supérieure des Techniques Aéronautiques et de Construction Automobile (ESTACA), BP 76121, 53061 Laval, France)

  • Bruno Francois

    (Laboratoire d’Electrotechnique et d’Electronique de Puissance de Lille (L2EP), Centrale Lille, Cité Scientifique, BP 48, 59651 Villeneuve d’Ascq, France)

  • Seddik Bacha

    (Grenoble INP, Université de Grenoble Alpes, CNRS, G2Elab, 38000 Grenoble, France)

Abstract

Wind power systems, which are currently being constructed for the electricity worldwide market, are mostly based on Doubly Fed Induction Generators (DFIGs). To control such systems, multilevel converters are increasingly preferred due to the well-known benefits they provide. This paper deals with the control of a standalone DFIG-based Wind Energy Conversion System (WECS) by using a three-level Neutral-Point-Clamped (NPC) converter. The frequency and magnitude of the stator output voltage of the DFIG are controlled and fixed at nominal values despite the variable rotor speed, ensuring a continuous AC supply for three-phase loads. This task is achieved by controlling the DFIG rotor currents via a PI controller combined with a new Simplified Direct Space Vector Modulation strategy (SDSVM), which is applied to the three-level NPC converter. This strategy is based on the use of a line-to-line three-level converter space vector diagram without using Park transformation and then simplifying it to that of a two-level converter. The performance of the proposed SDSVM technique in terms of controlling the three-level NPC-converter-based standalone WECS is demonstrated through simulation results. The whole WECS control and the SDSVM strategy are implemented on a dSPACE DS 1104 board that drives a DFIG-based wind system test bench. The obtained experimental results confirm the validity and performance in terms of control.

Suggested Citation

  • Tarak Ghennam & Lakhdar Belhadji & Nassim Rizoug & Bruno Francois & Seddik Bacha, 2024. "A Three-Level Neutral-Point-Clamped Converter Based Standalone Wind Energy Conversion System Controlled with a New Simplified Line-to-Line Space Vector Modulation," Energies, MDPI, vol. 17(9), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2214-:d:1388575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erdal Bekiroglu & Muhammed Duran Yazar, 2022. "MPPT Control of Grid Connected DFIG at Variable Wind Speed," Energies, MDPI, vol. 15(9), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Raouf & Kotb B. Tawfiq & Elsayed Tag Eldin & Hossam Youssef & Elwy E. El-Kholy, 2023. "Wind Energy Conversion Systems Based on a Synchronous Generator: Comparative Review of Control Methods and Performance," Energies, MDPI, vol. 16(5), pages 1-22, February.
    2. Djamila Rekioua & Toufik Rekioua & Ahmed Elsanabary & Saad Mekhilef, 2023. "Power Management Control of an Autonomous Photovoltaic/Wind Turbine/Battery System," Energies, MDPI, vol. 16(5), pages 1-24, February.
    3. Btissam Majout & Houda El Alami & Hassna Salime & Nada Zine Laabidine & Youness El Mourabit & Saad Motahhir & Manale Bouderbala & Mohammed Karim & Badre Bossoufi, 2022. "A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG," Energies, MDPI, vol. 15(17), pages 1-41, August.
    4. Mourad Yessef & Badre Bossoufi & Mohammed Taoussi & Saad Motahhir & Ahmed Lagrioui & Hamid Chojaa & Sanghun Lee & Byeong-Gwon Kang & Mohamed Abouhawwash, 2022. "Improving the Maximum Power Extraction from Wind Turbines Using a Second-Generation CRONE Controller," Energies, MDPI, vol. 15(10), pages 1-23, May.
    5. Hemant Ahuja & Arika Singh & Sachin Sharma & Gulshan Sharma & Pitshou N. Bokoro, 2022. "Coordinated Control of Wind Energy Conversion System during Unsymmetrical Fault at Grid," Energies, MDPI, vol. 15(13), pages 1-15, July.
    6. Stanisław Chudzik, 2023. "Wind Microturbine with Adjustable Blade Pitch Angle," Energies, MDPI, vol. 16(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2214-:d:1388575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.