IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i9p3264-d355042.html
   My bibliography  Save this article

Health Impacts of Ambient Biomass Smoke in Tasmania, Australia

Author

Listed:
  • Nicolas Borchers-Arriagada

    (Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia
    New South Wales Bushfire Risk Management Research Hub, University of Tasmania, Hobart 2522, Tasmania, Australia)

  • Andrew J. Palmer

    (Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia
    Centre for Health Policy, School of Population and Global Health, The University of Melbourne, Parkville 3010, Victoria, Australia)

  • David M.J.S. Bowman

    (School of Natural Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia)

  • Grant J. Williamson

    (School of Natural Sciences, University of Tasmania, Launceston 7250, Tasmania, Australia)

  • Fay H. Johnston

    (Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia)

Abstract

The island state of Tasmania has marked seasonal variations of fine particulate matter (PM 2.5 ) concentrations related to wood heating during winter, planned forest fires during autumn and spring, and bushfires during summer. Biomass smoke causes considerable health harms and associated costs. We estimated the historical health burden from PM 2.5 attributable to wood heater smoke (WHS) and landscape fire smoke (LFS) in Tasmania between 2010 and 2019. We calculated the daily population level exposure to WHS- and LFS-related PM 2.5 and estimated the number of cases and health costs due to premature mortality, cardiorespiratory hospital admissions, and asthma emergency department (ED) visits. We estimated 69 deaths, 86 hospital admissions, and 15 asthma ED visits, each year, with over 74% of impacts attributed to WHS. Average yearly costs associated with WHS were of AUD$ 293 million and AUD$ 16 million for LFS. The latter increased up to more than AUD$ 34 million during extreme bushfire seasons. This is the first study to quantify the health impacts attributable to biomass smoke for Tasmania. We estimated substantial impacts, which could be reduced through replacing heating technologies, improving fire management, and possibly implementing integrated strategies. This would most likely produce important and cost-effective health benefits.

Suggested Citation

  • Nicolas Borchers-Arriagada & Andrew J. Palmer & David M.J.S. Bowman & Grant J. Williamson & Fay H. Johnston, 2020. "Health Impacts of Ambient Biomass Smoke in Tasmania, Australia," IJERPH, MDPI, vol. 17(9), pages 1-17, May.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:9:p:3264-:d:355042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/9/3264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/9/3264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neal Fann & Amy D. Lamson & Susan C. Anenberg & Karen Wesson & David Risley & Bryan J. Hubbell, 2012. "Estimating the National Public Health Burden Associated with Exposure to Ambient PM2.5 and Ozone," Risk Analysis, John Wiley & Sons, vol. 32(1), pages 81-95, January.
    2. Gerardo Sanchez Martinez & Joseph V. Spadaro & Dimitris Chapizanis & Vladimir Kendrovski & Mihail Kochubovski & Pierpaolo Mudu, 2018. "Health Impacts and Economic Costs of Air Pollution in the Metropolitan Area of Skopje," IJERPH, MDPI, vol. 15(4), pages 1-11, March.
    3. Moeltner, K. & Kim, M.-K. & Zhu, E. & Yang, W., 2013. "Wildfire smoke and health impacts: A closer look at fire attributes and their marginal effects," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 476-496.
    4. Robinson, Lisa A. & Hammitt, James K. & O’Keeffe, Lucy, 2019. "Valuing Mortality Risk Reductions in Global Benefit-Cost Analysis," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 10(S1), pages 15-50, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan C. Hanigan & Richard A. Broome & Timothy B. Chaston & Martin Cope & Martine Dennekamp & Jane S. Heyworth & Katharine Heathcote & Joshua A. Horsley & Bin Jalaludin & Edward Jegasothy & Fay H. John, 2020. "Avoidable Mortality Attributable to Anthropogenic Fine Particulate Matter (PM 2.5 ) in Australia," IJERPH, MDPI, vol. 18(1), pages 1-9, December.
    2. Xiya Zhang & Haibo Hu, 2019. "Combining Data from Multiple Sources to Evaluate Spatial Variations in the Economic Costs of PM 2.5 -Related Health Conditions in the Beijing–Tianjin–Hebei Region," IJERPH, MDPI, vol. 16(20), pages 1-17, October.
    3. Nishi Srivastava, 2020. "Association of modeled PM2.5 with aerosol optical depth: model versus satellite," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(2), pages 689-705, June.
    4. Abbie A. Rogers & Fiona L. Dempster & Jacob I. Hawkins & Robert J. Johnston & Peter C. Boxall & John Rolfe & Marit E. Kragt & Michael P. Burton & David J. Pannell, 2019. "Valuing non-market economic impacts from natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1131-1161, November.
    5. Benjamin A. Jones & Shana McDermott, 2021. "The Local Labor Market Impacts of US Megafires," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    6. Decerf, Benoit & Ferreira, Francisco H.G. & Mahler, Daniel G. & Sterck, Olivier, 2021. "Lives and livelihoods: Estimates of the global mortality and poverty effects of the Covid-19 pandemic," World Development, Elsevier, vol. 146(C).
    7. Shih Ying Chang & William Vizuete & Marc Serre & Lakshmi Pradeepa Vennam & Mohammad Omary & Vlad Isakov & Michael Breen & Saravanan Arunachalam, 2017. "Finely Resolved On‐Road PM2.5 and Estimated Premature Mortality in Central North Carolina," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2420-2434, December.
    8. Brent, Daniel & Beland, Louis-Philippe, 2020. "Traffic congestion, transportation policies, and the performance of first responders," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    9. Agnieszka Jakubowska & Marcin Rabe, 2022. "Air Pollution and Limitations in Health: Identification of Inequalities in the Burdens of the Economies of the “Old” and “New” EU," Energies, MDPI, vol. 15(17), pages 1-16, August.
    10. Arrizaga, Rubí & Clarke, Damian & Cubillos, Pedro P. & Ruiz-Tagle V., Cristóbal, 2023. "Wildfires and Human Health: Evidence from 15 Wildfire Seasons in Chile," IDB Publications (Working Papers) 12954, Inter-American Development Bank.
    11. Marcela V. Parada‐Contzen, 2019. "The Value of a Statistical Life for Risk‐Averse and Risk‐Seeking Individuals," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2369-2390, November.
    12. Claxton, Karl & Asaria, Miqdad & Chansa, Collins & Jamison, Julian & Lomas, James & Ochalek, Jessica & Paulden, Mike, 2019. "Accounting for timing when assessing health-related policies," LSE Research Online Documents on Economics 100038, London School of Economics and Political Science, LSE Library.
    13. Benjamin A. Jones & Robert P. Berrens, 2021. "Prescribed Burns, Smoke Exposure, And Infant Health," Contemporary Economic Policy, Western Economic Association International, vol. 39(2), pages 292-309, April.
    14. Seungman Cha & Sunghoon Jung & Dawit Belew Bizuneh & Tadesse Abera & Young-Ah Doh & Jieun Seong & Ian Ross, 2020. "Benefits and Costs of a Community-Led Total Sanitation Intervention in Rural Ethiopia—A Trial-Based Ex Post Economic Evaluation," IJERPH, MDPI, vol. 17(14), pages 1-21, July.
    15. Vivek Shandas & Jackson Voelkel & Meenakshi Rao & Linda George, 2016. "Integrating High-Resolution Datasets to Target Mitigation Efforts for Improving Air Quality and Public Health in Urban Neighborhoods," IJERPH, MDPI, vol. 13(8), pages 1-16, August.
    16. Meenakshi Rao & Linda A. George & Vivek Shandas & Todd N. Rosenstiel, 2017. "Assessing the Potential of Land Use Modification to Mitigate Ambient NO 2 and Its Consequences for Respiratory Health," IJERPH, MDPI, vol. 14(7), pages 1-19, July.
    17. Johnston, David W. & Önder, Yasin Kürşat & Rahman, Muhammad Habibur & Ulubaşoğlu, Mehmet A., 2021. "Evaluating wildfire exposure: Using wellbeing data to estimate and value the impacts of wildfire," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 782-798.
    18. Jin, Yana & Andersson, Henrik & Zhang, Shiqiu, 2020. "Do preferences to reduce health risks related to air pollution depend on illness type? Evidence from a choice experiment in Beijing, China," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    19. Vítor João Pereira Domingues Martinho, 2019. "Socioeconomic Impacts of Forest Fires upon Portugal: An Analysis for the Agricultural and Forestry Sectors," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
    20. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:9:p:3264-:d:355042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.