IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i24p9442-d463153.html
   My bibliography  Save this article

Influence of Evacuation Policy on Clearance Time under Large-Scale Chemical Accident: An Agent-Based Modeling

Author

Listed:
  • Minjun Kim

    (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Korea)

  • Gi-Hyoug Cho

    (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Korea)

Abstract

Large-scale chemical accidents that occur near areas with large populations can cause significant damage not only to employees in a workplace but also to residents near the accident site. Despite the increasing frequency and severity of chemical accidents, few researchers have argued for the necessity of developing scenarios and simulation models for these accidents. Combining the TRANSIMS (Transportation Analysis and Simulation System) agent-based model with the ALOHA (Areal Location of Hazardous Atmospheres) dispersion model, this study aims to develop a modeling framework for simulating emergency evacuations in response to large-scale chemical accidents. The baseline accident scenario assumed the simultaneous leakage of toxic chemicals from industrial complexes near residential areas. The ALOHA model results showed that approximately 60% of residents in the scenario’s city were required to evacuate their homes. The majority of evacuees completed their evacuations within 5 h in the baseline scenario (evacuating maximum number of private vehicles without any intervention), while the distribution of the population and street network density caused geographical variability in clearance time. Clearance time can be significantly reduced by changing both the evacuees’ behaviors and the evacuation policy, which suggests the necessity for proper public intervention when the mass evacuation of residents is required due to chemical accidents.

Suggested Citation

  • Minjun Kim & Gi-Hyoug Cho, 2020. "Influence of Evacuation Policy on Clearance Time under Large-Scale Chemical Accident: An Agent-Based Modeling," IJERPH, MDPI, vol. 17(24), pages 1-18, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:24:p:9442-:d:463153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/24/9442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/24/9442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyo Eun Lee & Seok J. Yoon & Jong-Ryeul Sohn & Da-An Huh & Seok-Won Jang & Kyong Whan Moon, 2019. "Suitability Assessment of Legal Regulation of Chemical Concentrations According to Vapor Pressure and Damage Radius," IJERPH, MDPI, vol. 16(3), pages 1-17, January.
    2. Jong-Hwa Park & Myoungsu Shin & Gi-Hyoug Cho, 2016. "A dynamic estimation of casualties from an earthquake based on a time-use survey: applying HAZUS-MH software to Ulsan, Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 289-306, March.
    3. Elisabeth Krausmann & Ana Cruz, 2013. "Impact of the 11 March 2011, Great East Japan earthquake and tsunami on the chemical industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 811-828, June.
    4. Tanimoto, Jun & Hagishima, Aya & Tanaka, Yasukaka, 2010. "Study of bottleneck effect at an emergency evacuation exit using cellular automata model, mean field approximation analysis, and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5611-5618.
    5. Zhiqiang Wang & Jing Huang & Huimin Wang & Jinle Kang & Weiwei Cao, 2020. "Analysis of Flood Evacuation Process in Vulnerable Community with Mutual Aid Mechanism: An Agent-Based Simulation Framework," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    6. Bowen Hou & Yang Cao & Dongye Lv & Shuzhi Zhao, 2020. "Transit-Based Evacuation for Urban Rail Transit Line Emergency," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    7. Lingjie Zeng & Jun Gao & Qiong Wang & Le Chang, 2018. "A Risk Assessment Approach for Evaluating the Impact of Toxic Contaminants Released Indoors by Considering Various Emergency Ventilation and Evacuation Strategies," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2379-2399, November.
    8. X Chen & F B Zhan, 2008. "Agent-based modelling and simulation of urban evacuation: relative effectiveness of simultaneous and staged evacuation strategies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 25-33, January.
    9. Jong-Hwa Park & Myoungsu Shin & Gi-Hyoug Cho, 2016. "A dynamic estimation of casualties from an earthquake based on a time-use survey: applying HAZUS-MH software to Ulsan, Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 289-306, March.
    10. Richard Dawson & Roger Peppe & Miao Wang, 2011. "An agent-based model for risk-based flood incident management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 167-189, October.
    11. Meng Li & Han Jiang & Zhen Zhang & Wei Ni & Pinchao Zhang & Jingyan Song, 2014. "A Simulation-Based Framework for the Cooperation of VMS Travel Guidance and Traffic Signal Control," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-13, June.
    12. Shanjiang Zhu & David Levinson, 2015. "Do People Use the Shortest Path? An Empirical Test of Wardrop’s First Principle," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    13. Xuwei Chen & John Meaker & F. Zhan, 2006. "Agent-Based Modeling and Analysis of Hurricane Evacuation Procedures for the Florida Keys," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(3), pages 321-338, July.
    14. Hyeong Suk Na & Amarnath Banerjee, 2015. "A disaster evacuation network model for transporting multiple priority evacuees," IISE Transactions, Taylor & Francis Journals, vol. 47(11), pages 1287-1299, November.
    15. Yafei Zhou & Mao Liu, 2012. "Risk Assessment of Major Hazards and its Application in Urban Planning: A Case Study," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 566-577, March.
    16. Jong-Hwa Park & Gi-Hyoug Cho, 2016. "Examining the Association between Physical Characteristics of Green Space and Land Surface Temperature: A Case Study of Ulsan, Korea," Sustainability, MDPI, vol. 8(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shangde Gao & Yan Wang, 2021. "Assessing the impact of geo-targeted warning messages on residents’ evacuation decisions before a hurricane using agent-based modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 123-146, May.
    2. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    3. Xia Chaoxu & Nie Gaozhong & Fan Xiwei & Li Huayue & Zhou Junxue & Zeng Xun, 2022. "A new model for the quantitative assessment of earthquake casualties based on the correction of anti-lethal level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1199-1226, January.
    4. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    5. Annetta Burger & Talha Oz & William G. Kennedy & Andrew T. Crooks, 2019. "Computational Social Science of Disasters: Opportunities and Challenges," Future Internet, MDPI, vol. 11(5), pages 1-31, April.
    6. Bertha Maya Sopha & Athaya Islami Triasari & Lynette Cheah, 2021. "Sustainable Humanitarian Operations: Multi-Method Simulation for Large-Scale Evacuation," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    7. Qing Yang & Ying Sun & Xingxing Liu & Jinmei Wang, 2020. "MAS-Based Evacuation Simulation of an Urban Community during an Urban Rainstorm Disaster in China," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    8. Haifang Tang & Junyou Liu & Bohong Zheng, 2022. "Study on the Green Space Patterns and Microclimate Simulation in Typical Urban Blocks in Central China," Sustainability, MDPI, vol. 14(22), pages 1-39, November.
    9. Nagarajan, Magesh & Shaw, Duncan & Albores, Pavel, 2012. "Disseminating a warning message to evacuate: A simulation study of the behaviour of neighbours," European Journal of Operational Research, Elsevier, vol. 220(3), pages 810-819.
    10. Man Li & Tao Ye & Peijun Shi & Jian Fang, 2015. "Impacts of the global economic crisis and Tohoku earthquake on Sino–Japan trade: a comparative perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 541-556, January.
    11. Huo, Feizhou & Li, Chao & Li, Yufei & Lv, Wei & Ma, Yaping, 2022. "An extended model for describing pedestrian evacuation considering the impact of obstacles on the visual view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    12. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    13. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    14. Piyapong Suwanno & Chaiwat Yaibok & Noriyasu Tsumita & Atsushi Fukuda & Kestsirin Theerathitichaipa & Manlika Seefong & Sajjakaj Jomnonkwao & Rattanaporn Kasemsri, 2023. "Estimation of the Evacuation Time According to Different Flood Depths," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    15. Bogyrbayeva, Aigerim & Kwon, Changhyun, 2021. "Pessimistic evasive flow capturing problems," European Journal of Operational Research, Elsevier, vol. 293(1), pages 133-148.
    16. Lachapelle, Aimé & Wolfram, Marie-Therese, 2011. "On a mean field game approach modeling congestion and aversion in pedestrian crowds," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1572-1589.
    17. Mengying Cui & David Levinson, 2021. "Shortest paths, travel costs, and traffic," Environment and Planning B, , vol. 48(4), pages 828-844, May.
    18. Jorge León & Alan March, 2016. "An urban form response to disaster vulnerability: Improving tsunami evacuation in Iquique, Chile," Environment and Planning B, , vol. 43(5), pages 826-847, September.
    19. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    20. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:24:p:9442-:d:463153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.