IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i8p1475-d226016.html
   My bibliography  Save this article

Different Associations between DC-SIGN Promoter-336G/A ( rs4804803 ) Polymorphism with Severe Dengue in Asians and South-Central Americans: a Meta-Analysis

Author

Listed:
  • Jiangping Ren

    (Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou 310051, China
    Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou 310051, China
    Field Epidemiology Training Program of Zhejiang Province, Hangzhou 310051, China)

  • Zhengting Wang

    (Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou 310051, China)

  • Enfu Chen

    (Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou 310051, China
    Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou 310051, China)

Abstract

Objective : This study was conducted to identify the association between rs4804803 polymorphism in DC-SIGN with the susceptibility of severe dengue. Methods : A comprehensive search was conducted to identify all eligible papers in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Google Scholar. Odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were used to assess the association. Subgroup analyses were performed by ethnicity. Sensitivity analyses were performed through employing different statistical models (fixed versus random effect model). Results : A total of nine papers and 12 studies, with 1520 severe dengue and 1496 clinical dengue infection were included. The overall meta-analysis revealed significant associations between rs4804803 and severe dengue under the recession ( GG versus GA/AA : OR = 0.44, 95%CI, 0.23–0.82) and a codominant model ( GG versus AA : OR = 0.43, 95%CI, 0.23–0.81), but sensitivity analysis indicated that the significant pooled ORs were not robust. The subgroup analysis suggested that the carrier of G in rs4804803 was a risk factor for severe dengue under dominant ( GG/GA versus AA : OR = 1.86,95%CI, 1.01–3.45), superdominant ( GA versus GG/AA : OR = 1.81,95%CI, 1.02–3.21) and a codominant ( GA versus AA : OR=1.82,95%CI, 1.02–3.26) models in Asians, while it was a protective factor for severe dengue in South-central Americans under recessive ( GG versus GA/AA : OR = 0.27,95%CI, 0.10–0.70) and codominant ( GG versus AA : OR=0.24,95%CI, 0.09–0.64) models. The results from subgroup analysis were robust. Conclusions : Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin ( DC-SIGN ) promoter-336G/A ( rs4804803 ) polymorphism is association with severe dengue, and it acts in different directions for Asians and South-central Americans.

Suggested Citation

  • Jiangping Ren & Zhengting Wang & Enfu Chen, 2019. "Different Associations between DC-SIGN Promoter-336G/A ( rs4804803 ) Polymorphism with Severe Dengue in Asians and South-Central Americans: a Meta-Analysis," IJERPH, MDPI, vol. 16(8), pages 1-13, April.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:8:p:1475-:d:226016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/8/1475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/8/1475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Carolina Romero Machado & Elizabeth Stankiewicz Machado & Roger Denis Rohloff & Marina Azevedo & Dayse Pereira Campos & Robson Bruniera de Oliveira & Patrícia Brasil, 2013. "Is Pregnancy Associated with Severe Dengue? A Review of Data from the Rio de Janeiro Surveillance Information System," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 7(5), pages 1-4, May.
    3. Jessica Gurevitch & Julia Koricheva & Shinichi Nakagawa & Gavin Stewart, 2018. "Meta-analysis and the science of research synthesis," Nature, Nature, vol. 555(7695), pages 175-182, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangzhuang Yuan & Yuan Chen & Meifeng Zhong & Yongping Lin & Lidong Liu, 2022. "Risk and predictive factors for severe dengue infection: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-18, April.
    2. Oded Berger-Tal & Alison L Greggor & Biljana Macura & Carrie Ann Adams & Arden Blumenthal & Amos Bouskila & Ulrika Candolin & Carolina Doran & Esteban Fernández-Juricic & Kiyoko M Gotanda & Catherine , 2019. "Systematic reviews and maps as tools for applying behavioral ecology to management and policy," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(1), pages 1-8.
    3. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    4. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    7. Phu Nguyen-Van & Anne Stenger & Tuyen Tiet, 2021. "Social incentive factors in interventions promoting sustainable behaviors: A meta-analysis," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-27, December.
    8. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    9. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    10. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    11. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    12. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    13. Gerhart Knerer & Christine S M Currie & Sally C Brailsford, 2020. "The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-32, October.
    14. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    15. Irsova, Zuzana & Doucouliagos, Hristos & Havranek, Tomas & Stanley, T. D., 2023. "Meta-Analysis of Social Science Research: A Practitioner’s Guide," EconStor Preprints 273719, ZBW - Leibniz Information Centre for Economics.
    16. Adriana Zubieta-Zavala & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & Luis García-Valladares & Malaquias López-Cervantes & Juan Guillermo López Yescas & Luis Durán-Arenas, 2016. "Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(8), pages 1-14, August.
    17. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    18. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    19. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    20. Lukas Hafner & Maxime Pichon & Christophe Burucoa & Sophie H. A. Nusser & Alexandra Moura & Marc Garcia-Garcera & Marc Lecuit, 2021. "Listeria monocytogenes faecal carriage is common and depends on the gut microbiota," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:8:p:1475-:d:226016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.