IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0004897.html
   My bibliography  Save this article

Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach

Author

Listed:
  • Adriana Zubieta-Zavala
  • Guillermo Salinas-Escudero
  • Adrian Ramírez-Chávez
  • Luis García-Valladares
  • Malaquias López-Cervantes
  • Juan Guillermo López Yescas
  • Luis Durán-Arenas

Abstract

Introduction: The increasing burden of dengue fever (DF) in the Americas, and the current epidemic in previously unaffected countries, generate major costs for national healthcare systems. There is a need to quantify the average cost per DF case. In Mexico, few data are available on costs, despite DF being endemic in some areas. Extrapolations from studies in other countries may prove unreliable and are complicated by the two main Mexican healthcare systems (the Secretariat of Health [SS] and the Mexican Social Security Institute [IMSS]). The present study aimed to generate specific average DF cost-per-case data for Mexico using a micro-costing approach. Methods: Expected medical costs associated with an ideal management protocol for DF (denoted ´ideal costs´) were compared with the medical costs of current treatment practice (denoted ´real costs´) in 2012. Real cost data were derived from chart review of DF cases and interviews with patients and key personnel from 64 selected hospitals and ambulatory care units in 16 states for IMSS and SS. In both institutions, ideal and real costs were estimated using the program, actions, activities, tasks, inputs (PAATI) approach, a micro-costing technique developed by us. Results: Clinical pathways were obtained for 1,168 patients following review of 1,293 charts. Ideal and real costs for SS patients were US$165.72 and US$32.60, respectively, in the outpatient setting, and US$587.77 and US$490.93, respectively, in the hospital setting. For IMSS patients, ideal and real costs were US$337.50 and US$92.03, respectively, in the outpatient setting, and US$2,042.54 and US$1,644.69 in the hospital setting. Conclusions: The markedly higher ideal versus real costs may indicate deficiencies in the actual care of patients with DF. It may be necessary to derive better estimates with micro-costing techniques and compare the ideal protocol with current practice when calculating these costs, as patients do not always receive optimal care. Author Summary: Dengue fever (DF) is caused by infection with the dengue virus, which is spread by the Aedes aegypti mosquito. Although the effects of DF are usually mild, in some cases serious illness and even death may result. The average costs per case when extrapolated to society may therefore be high, particularly given the large number of people infected during an endemic year. In Mexico, relatively little is known about the average cost per case (from either the healthcare system or the patient perspective). Such information is important to guide decisions about health policy, e.g. vaccination or public education. We aimed to quantify the average cost per case of DF using a micro-costing approach, both for DF treatment according to an ideal protocol for the management of the patient (´ideal costs´) and according to current treatment practice in the health services (´real costs´). Our results were largely consistent with findings from other international studies, but showed higher ideal costs compared with real costs. We think this may point to inadequate use of laboratory tests and treatments for patients with DF in Mexico. Our cost data will be used in a subsequent publication regarding the economic impact of DF in Mexico.

Suggested Citation

  • Adriana Zubieta-Zavala & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & Luis García-Valladares & Malaquias López-Cervantes & Juan Guillermo López Yescas & Luis Durán-Arenas, 2016. "Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(8), pages 1-14, August.
  • Handle: RePEc:plo:pntd00:0004897
    DOI: 10.1371/journal.pntd.0004897
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004897
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0004897&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0004897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Betanzos-Reyes, Angel Francisco & Rodriguez, Mario Henry & Duran-Arenas, Luis Gerardo & Hernandez-Avila, Juan Eugenio & Mendez-Galvan, Jorge Fernando & Monroy, Oscar Julio Velazquez & Coyner, Roberto , 2007. "Comparative analysis of two alternative models for epidemiological surveillance in the Mexican Malaria Control Program," Health Policy, Elsevier, vol. 80(3), pages 465-482, March.
    3. Núria Homedes & Antonio Ugalde, 2009. "Twenty-Five Years of Convoluted Health Reforms in Mexico," PLOS Medicine, Public Library of Science, vol. 6(8), pages 1-8, August.
    4. Dagna Constenla & Cristina Garcia & Noah Lefcourt, 2015. "Assessing the Economics of Dengue: Results from a Systematic Review of the Literature and Expert Survey," PharmacoEconomics, Springer, vol. 33(11), pages 1107-1135, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriana Zubieta-Zavala & Malaquias López-Cervantes & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & José Ramos Castañeda & Sendy Isarel Hernández-Gaytán & Juan Guillermo López Yescas & Luis Durá, 2018. "Economic impact of dengue in Mexico considering reported cases for 2012 to 2016," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(12), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    2. Naveed Heydari & David A. Larsen & Marco Neira & Efraín Beltrán Ayala & Prissila Fernandez & Jefferson Adrian & Rosemary Rochford & Anna M. Stewart-Ibarra, 2017. "Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador," IJERPH, MDPI, vol. 14(2), pages 1-15, February.
    3. Christopher Fitzpatrick & Alexander Haines & Mathieu Bangert & Andrew Farlow & Janet Hemingway & Raman Velayudhan, 2017. "An economic evaluation of vector control in the age of a dengue vaccine," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(8), pages 1-27, August.
    4. Elizabeth T Cafiero-Fonseca & Andrew Stawasz & Sydney T Johnson & Reiko Sato & David E Bloom, 2017. "The full benefits of adult pneumococcal vaccination: A systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
    5. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    6. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    9. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    10. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    11. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    12. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    13. Gerhart Knerer & Christine S M Currie & Sally C Brailsford, 2020. "The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-32, October.
    14. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    15. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    16. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    17. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    18. Mohd Hanief Ahmad & Mohd Ismail Ibrahim & Zeehaida Mohamed & Nabilah Ismail & Muhammad Amiruddin Abdullah & Rafidah Hanim Shueb & Mohd Nazri Shafei, 2018. "The Sensitivity, Specificity and Accuracy of Warning Signs in Predicting Severe Dengue, the Severe Dengue Prevalence and Its Associated Factors," IJERPH, MDPI, vol. 15(9), pages 1-12, September.
    19. Zhichao Li, 2022. "Forecasting Weekly Dengue Cases by Integrating Google Earth Engine-Based Risk Predictor Generation and Google Colab-Based Deep Learning Modeling in Fortaleza and the Federal District, Brazil," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    20. Peter Winskill & Danilo O Carvalho & Margareth L Capurro & Luke Alphey & Christl A Donnelly & Andrew R McKemey, 2015. "Dispersal of Engineered Male Aedes aegypti Mosquitoes," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(11), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0004897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.