IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i6p1026-d215812.html
   My bibliography  Save this article

Temperature-Related Summer Mortality Under Multiple Climate, Population, and Adaptation Scenarios

Author

Listed:
  • Jae Young Lee

    (Institute of Health and Environment and Graduate School of Public Health, Seoul National University, Seoul 08826, South Korea)

  • Woo-Seop Lee

    (Climate Services and Research Department, APEC Climate Center, Busan 48058, South Korea)

  • Kristie L. Ebi

    (Center for Health and the Global Environment, University of Washington, Seattle, WA 98105, USA)

  • Ho Kim

    (Institute of Health and Environment and Graduate School of Public Health, Seoul National University, Seoul 08826, South Korea)

Abstract

Projections of the magnitude and pattern of possible health risks from climate change should be based on multiple climate and development scenarios to describe the range of uncertainties, to inform effective and efficient policies. For a better understanding of climate change-related risks in seven metropolitan cities of South Korea, we estimated temperature-related summer (June to August) mortality until 2100 using projected changes in climate, population, and adaptation. In addition, we extracted the variations in the mortality estimates associated with uncertainties in climate, population, and adaptation scenarios using 25 climate models, two Representative Concentration Pathways (RCP 4.5 and 8.5), three population scenarios (high, medium and low variants), and four adaptation scenarios (absolute threshold shift, slope reduction in the temperature-mortality relationship, a combination of slope reduction and threshold shift, and a sigmoid function based on the historical trend). Compared to the baseline period (1991–2015), temperature-attributable mortality in South Korea during summer in the 2090s is projected to increase 5.1 times for RCP 4.5 and 12.9 times for RCP 8.5 due to climate and population changes. Estimated future mortality varies by up to +44%/−55%, −80%, −60%, and +12%/−11% associated with the choice of climate models, adaptation, climate, and population scenarios, respectively, compared to the mortality estimated for the median of the climate models, no adaptation, RCP 8.5, and medium population variant. Health system choices about adaptation are the most important determinants of future mortality after climate projections. The range of possible future mortality underscores the importance of flexible, iterative risk management.

Suggested Citation

  • Jae Young Lee & Woo-Seop Lee & Kristie L. Ebi & Ho Kim, 2019. "Temperature-Related Summer Mortality Under Multiple Climate, Population, and Adaptation Scenarios," IJERPH, MDPI, vol. 16(6), pages 1-9, March.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:6:p:1026-:d:215812
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/6/1026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/6/1026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katie Jenkins & Jim Hall & Vassilis Glenis & Chris Kilsby & Mark McCarthy & Clare Goodess & Duncan Smith & Nick Malleson & Mark Birkin, 2014. "Probabilistic spatial risk assessment of heat impacts and adaptations for London," Climatic Change, Springer, vol. 124(1), pages 105-117, May.
    2. Do-Woo Kim & Ravinesh Deo & Jea-Hak Chung & Jong-Seol Lee, 2016. "Projection of heat wave mortality related to climate change in Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 623-637, January.
    3. A. Marsha & S. R. Sain & M. J. Heaton & A. J. Monaghan & O.V. Wilhelmi, 2018. "Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA," Climatic Change, Springer, vol. 146(3), pages 471-485, February.
    4. Elisaveta P. Petkova & Radley M. Horton & Daniel A. Bader & Patrick L. Kinney, 2013. "Projected Heat-Related Mortality in the U.S. Urban Northeast," IJERPH, MDPI, vol. 10(12), pages 1-14, December.
    5. Maud M. T. E. Huynen & Pim Martens, 2015. "Climate Change Effects on Heat- and Cold-Related Mortality in the Netherlands: A Scenario-Based Integrated Environmental Health Impact Assessment," IJERPH, MDPI, vol. 12(10), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chin Leong Lim, 2020. "Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming," IJERPH, MDPI, vol. 17(21), pages 1-34, October.
    2. Jae Young Lee, 2022. "A Subgroup Method of Projecting Future Vulnerability and Adaptation to Extreme Heat," Sustainability, MDPI, vol. 14(24), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. J. W. Botzen & M. L. Martinius & P. Bröde & M. A. Folkerts & P. Ignjacevic & F. Estrada & C. N. Harmsen & H. A. M. Daanen, 2020. "Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands," Climatic Change, Springer, vol. 162(2), pages 545-562, September.
    2. Giovanni Matteo & Pierfrancesco Nardi & Stefano Grego & Caterina Guidi, 2018. "Bibliometric analysis of Climate Change Vulnerability Assessment research," Environment Systems and Decisions, Springer, vol. 38(4), pages 508-516, December.
    3. Jae Young Lee & Martin Röösli & Martina S. Ragettli, 2021. "Estimation of Heat-Attributable Mortality Using the Cross-Validated Best Temperature Metric in Switzerland and South Korea," IJERPH, MDPI, vol. 18(12), pages 1-9, June.
    4. Kijin Seong & Junfeng Jiao & Akhil Mandalapu, 2023. "Evaluating the effects of heat vulnerability on heat-related emergency medical service incidents: Lessons from Austin, Texas," Environment and Planning B, , vol. 50(3), pages 776-795, March.
    5. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    6. Elisaveta P. Petkova & Daniel A. Bader & G. Brooke Anderson & Radley M. Horton & Kim Knowlton & Patrick L. Kinney, 2014. "Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities," IJERPH, MDPI, vol. 11(11), pages 1-13, October.
    7. Hung Chak Ho & Ka Ming Wai & Minhao He & Ta-Chien Chan & Chengbin Deng & Man Sing Wong, 2020. "Mortality risk of a future heat event across a subtropical city: implications for community planning and health policy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 623-637, August.
    8. Ruth McDermott-Levy & Madeline Scolio & Kabindra M. Shakya & Caroline H. Moore, 2021. "Factors That Influence Climate Change-Related Mortality in the United States: An Integrative Review," IJERPH, MDPI, vol. 18(15), pages 1-21, August.
    9. Jan C. Semenza, 2014. "Climate Change and Human Health," IJERPH, MDPI, vol. 11(7), pages 1-7, July.
    10. Jongchul Park & Yeora Chae & Seo Hyung Choi, 2019. "Analysis of Mortality Change Rate from Temperature in Summer by Age, Occupation, Household Type, and Chronic Diseases in 229 Korean Municipalities from 2007–2016," IJERPH, MDPI, vol. 16(9), pages 1-15, May.
    11. Chae Yeon Park & Dong Kun Lee & Jung Hee Hyun, 2019. "The Effects of Extreme Heat Adaptation Strategies under Different Climate Change Mitigation Scenarios in Seoul, Korea," Sustainability, MDPI, vol. 11(14), pages 1-13, July.
    12. Ka-Ming Wai & Lei Xiao & Tanya Zheng Tan, 2021. "Improvement of the Outdoor Thermal Comfort by Water Spraying in a High-Density Urban Environment under the Influence of a Future (2050) Climate," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    13. Ye, Bin & Jiang, Jingjing & Liu, Junguo & Zheng, Yi & Zhou, Nan, 2021. "Research on quantitative assessment of climate change risk at an urban scale: Review of recent progress and outlook of future direction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Guillaume Rohat & Olga Wilhelmi & Johannes Flacke & Andrew Monaghan & Jing Gao & Martin Maarseveen & Hy Dao, 2021. "Assessing urban heat-related adaptation strategies under multiple futures for a major U.S. city," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    15. Tao Liu & Zhoupeng Ren & Yonghui Zhang & Baixiang Feng & Hualiang Lin & Jianpeng Xiao & Weilin Zeng & Xing Li & Zhihao Li & Shannon Rutherford & Yanjun Xu & Shao Lin & Philip C. Nasca & Yaodong Du & J, 2019. "Modification Effects of Population Expansion, Ageing, and Adaptation on Heat-Related Mortality Risks Under Different Climate Change Scenarios in Guangzhou, China," IJERPH, MDPI, vol. 16(3), pages 1-17, January.
    16. Misun Kang & Kyu Rang Kim & Ju-Young Shin, 2020. "Event-Based Heat-Related Risk Assessment Model for South Korea Using Maximum Perceived Temperature, Wet-Bulb Globe Temperature, and Air Temperature Data," IJERPH, MDPI, vol. 17(8), pages 1-19, April.
    17. Jae Young Lee & Ejin Kim & Woo-Seop Lee & Yeora Chae & Ho Kim, 2018. "Projection of Future Mortality Due to Temperature and Population Changes under Representative Concentration Pathways and Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 15(4), pages 1-9, April.
    18. Guillaume Rohat, 2018. "Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 15(3), pages 1-23, March.
    19. Eliška Krkoška Lorencová & Charlotte E. L. Whitham & Petr Bašta & Zuzana Veronika Harmáčková & Petr Štěpánek & Pavel Zahradníček & Aleš Farda & David Vačkář, 2018. "Participatory Climate Change Impact Assessment in Three Czech Cities: The Case of Heatwaves," Sustainability, MDPI, vol. 10(6), pages 1-21, June.
    20. O. Pritchard & S. Hallett & T. Farewell, 2015. "Probabilistic soil moisture projections to assess Great Britain’s future clay-related subsidence hazard," Climatic Change, Springer, vol. 133(4), pages 635-650, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:6:p:1026-:d:215812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.