IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i12p2846-d190347.html
   My bibliography  Save this article

Spatial and Temporal Variations of Six Criteria Air Pollutants in Fujian Province, China

Author

Listed:
  • Weicong Fu

    (College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    Urban Forestry Research in Action, Department of Forest Resources Management, The University of British Columbia, Vancouver V6T 1Z4, BC Canada
    Collaborative for Advanced Landscape Planning, Faculty of Forestry, The University of British Columbia, Vancouver V6T 1Z4, BC, Canada
    Faculty of Forestry, The University of British Columbia, Vancouver V6T 1Z4, BC, Canada)

  • Ziru Chen

    (College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    Urban Forestry Research in Action, Department of Forest Resources Management, The University of British Columbia, Vancouver V6T 1Z4, BC Canada
    Collaborative for Advanced Landscape Planning, Faculty of Forestry, The University of British Columbia, Vancouver V6T 1Z4, BC, Canada)

  • Zhipeng Zhu

    (College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    Faculty of Forestry, The University of British Columbia, Vancouver V6T 1Z4, BC, Canada)

  • Qunyue Liu

    (College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    Urban Forestry Research in Action, Department of Forest Resources Management, The University of British Columbia, Vancouver V6T 1Z4, BC Canada)

  • Cecil C. Konijnendijk Van den Bosch

    (Urban Forestry Research in Action, Department of Forest Resources Management, The University of British Columbia, Vancouver V6T 1Z4, BC Canada
    Faculty of Forestry, The University of British Columbia, Vancouver V6T 1Z4, BC, Canada)

  • Jinda Qi

    (Faculty of built environment, University of New South Wales, Sydney 2052, Australia)

  • Mo Wang

    (College of Architecture & Urban Planning, Guangzhou University, Guangzhou 510006, Guangdong, China)

  • Emily Dang

    (Faculty of Forestry, The University of British Columbia, Vancouver V6T 1Z4, BC, Canada)

  • Jianwen Dong

    (College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China)

Abstract

Air pollution has become a critical issue in the urban areas of southeastern China in recent years. A complete understanding of the tempo-spatial characteristics of air pollution can help the public and governmental bodies manage their lives and work better. In this study, data for six criteria air pollutants (including particulate matter (PM 2.5 , PM 10 ), carbon monoxide (CO), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and ozone (O 3 )) from 37 sites in nine major cities within Fujian Province, China were collected between January 2015 to December 2016, and analyzed. We analyzed the spatial and temporal variations of these six criteria pollutants, as well as the attainment rates, and identified what were the major pollutants. Our results show that: (1) the two-year mean values of PM 2.5 and PM 10 exceeded the Chinese National Ambient Air Quality Standard (CAAQS) standard I levels, whereas other air pollutants were below the CAAQS standard I; (2) the six criteria air pollutants show spatial variations (i.e. most air pollutants were higher in the city center areas, followed by suburban areas and exurban areas, except for O 3 ; and the concentrations of PM 10 , PM 2.5 , NO 2 , O 3 were higher in coastal cities than in inland cities); (3) seasonal variations and the no attainment rates of air pollutants were found to be higher in cold seasons and lower in warm seasons, except for O 3 ; (4) the most frequently present air pollutant was PM 10 , with PM 2.5 and O 3 being the second and third most frequent, respectively; (5) all the air pollutants, except O 3 , showed positive correlations with each other. These results provide additional information for the effective control of air pollution in the province of Fujian.

Suggested Citation

  • Weicong Fu & Ziru Chen & Zhipeng Zhu & Qunyue Liu & Cecil C. Konijnendijk Van den Bosch & Jinda Qi & Mo Wang & Emily Dang & Jianwen Dong, 2018. "Spatial and Temporal Variations of Six Criteria Air Pollutants in Fujian Province, China," IJERPH, MDPI, vol. 15(12), pages 1-20, December.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2846-:d:190347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/12/2846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/12/2846/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An Zhang & Jinhuang Lin & Wenhui Chen & Mingshui Lin & Chengcheng Lei, 2021. "Spatial–Temporal Distribution Variation of Ground-Level Ozone in China’s Pearl River Delta Metropolitan Region," IJERPH, MDPI, vol. 18(3), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    2. Héctor Jorquera & Ana María Villalobos, 2020. "Combining Cluster Analysis of Air Pollution and Meteorological Data with Receptor Model Results for Ambient PM 2.5 and PM 10," IJERPH, MDPI, vol. 17(22), pages 1-25, November.
    3. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    4. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    5. Hongjun Yu & Jiali Cheng & Shelby Paige Gordon & Ruopeng An & Miao Yu & Xiaodan Chen & Qingli Yue & Jun Qiu, 2018. "Impact of Air Pollution on Sedentary Behavior: A Cohort Study of Freshmen at a University in Beijing, China," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    6. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    7. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    8. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    9. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    10. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
    11. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    12. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.
    13. Ling-Yun He & Xiao-Feng Qi, 2021. "Environmental Courts, Environment and Employment: Evidence from China," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    14. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    15. Weicong Fu & Qunyue Liu & Cecil Konijnendijk van den Bosch & Ziru Chen & Zhipeng Zhu & Jinda Qi & Mo Wang & Emily Dang & Jianwen Dong, 2018. "Long-Term Atmospheric Visibility Trends and Their Relations to Socioeconomic Factors in Xiamen City, China," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    16. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    17. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    18. Shen Zhao & Yong Xu, 2019. "Exploring the Spatial Variation Characteristics and Influencing Factors of PM 2.5 Pollution in China: Evidence from 289 Chinese Cities," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    19. Robert Böhm & Özgür Gürerk & Thomas Lauer, 2020. "Nudging Climate Change Mitigation: A Laboratory Experiment with Inter-Generational Public Goods," Games, MDPI, vol. 11(4), pages 1-20, October.
    20. Kharecha, Pushker A. & Sato, Makiko, 2019. "Implications of energy and CO2 emission changes in Japan and Germany after the Fukushima accident," Energy Policy, Elsevier, vol. 132(C), pages 647-653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2846-:d:190347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.