IDEAS home Printed from https://ideas.repec.org/a/gam/jgeogr/v4y2024i1p10-167d1346714.html
   My bibliography  Save this article

Hydromorphic Impact of Matera’s Urban Area

Author

Listed:
  • Ruggero Ermini

    (Department of European and Mediterranean Cultures, Università degli Studi della Basilicata, DICEM, 75100 Matera, Italy)

  • Carmen Fattore

    (DICEM (Dipartimento delle Culture Europee e del Mediterraneo), Università degli Studi della Basilicata, SI, 85100 Potenza, Italy)

  • Amir Aubed Zoubi

    (Industrial Ecology, Faculty of Technology, Policy and Management, Delft University of Technology, 2628 CD Delft, The Netherlands)

Abstract

Urban transformations change land use, permeability, and morphology of the areas involved in the evolution process; this, consequently, modifies the impact produced by the precipitation phenomena and increases the risk of flooding or uncontrolled runoff in different areas.The proposed watershed hydrologic approach enables us to consider the morphology of the territory together with the transformations implemented by human activities, and this allows us to evaluate the effects of each area on neighboring areas, emphasizes the hydrological roles of upper, intermediate, and lower parts, and reveals urban and non-urban connections. This elucidates hydromorphic complexities in urban transformations and assesses climate change adaptability. The suggested methodology has been implemented in the urban district of “Sasso Caveoso” within the city of Matera. This application facilitates a quantitative synthesis of the contextual response, allowing for an analysis across various scenarios and offering decision-support tools of practical utility.

Suggested Citation

  • Ruggero Ermini & Carmen Fattore & Amir Aubed Zoubi, 2024. "Hydromorphic Impact of Matera’s Urban Area," Geographies, MDPI, vol. 4(1), pages 1-16, February.
  • Handle: RePEc:gam:jgeogr:v:4:y:2024:i:1:p:10-167:d:1346714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-7086/4/1/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-7086/4/1/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walker Ashley & Mace Bentley & J. Stallins, 2012. "Urban-induced thunderstorm modification in the Southeast United States," Climatic Change, Springer, vol. 113(2), pages 481-498, July.
    2. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    3. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808, Decembrie.
    4. Luc Feyen & Rutger Dankers & Katalin Bódis & Peter Salamon & José Barredo, 2012. "Fluvial flood risk in Europe in present and future climates," Climatic Change, Springer, vol. 112(1), pages 47-62, May.
    5. E. M. Fischer & R. Knutti, 2016. "Observed heavy precipitation increase confirms theory and early models," Nature Climate Change, Nature, vol. 6(11), pages 986-991, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    2. Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    3. Browne, David & O'Regan, Bernadette & Moles, Richard, 2012. "Comparison of energy flow accounting, energy flow metabolism ratio analysis and ecological footprinting as tools for measuring urban sustainability: A case-study of an Irish city-region," Ecological Economics, Elsevier, vol. 83(C), pages 97-107.
    4. Stossel, Zeev & Kissinger, Meidad & Meir, Avinoam, 2015. "Measuring the biophysical dimension of urban sustainability," Ecological Economics, Elsevier, vol. 120(C), pages 153-163.
    5. Bodini, Antonio & Bondavalli, Cristina & Allesina, Stefano, 2012. "Cities as ecosystems: Growth, development and implications for sustainability," Ecological Modelling, Elsevier, vol. 245(C), pages 185-198.
    6. Pauliuk, Stefan & Hertwich, Edgar G., 2015. "Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies," Ecological Economics, Elsevier, vol. 119(C), pages 83-93.
    7. Massimiliano Viglioglia & Matteo Giovanardi & Riccardo Pollo & Pier Paolo Peruccio, 2021. "Smart District and Circular Economy: The Role of ICT Solutions in Promoting Circular Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    8. Nicolas Buclet & David Lazarevic, 2015. "Principles for sustainability: the need to shift to a sustainable conventional regime," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(1), pages 83-100, February.
    9. Rob Roggema, 2017. "The Future of Sustainable Urbanism: Society-Based, Complexity-Led, and Landscape-Driven," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    10. Sofie Pandis Iverot & Nils Brandt, 2011. "The development of a sustainable urban district in Hammarby Sjöstad, Stockholm, Sweden?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(6), pages 1043-1064, December.
    11. Lee, Susan E. & Braithwaite, Peter & Leach, Joanne M. & Rogers, Chris D.F., 2016. "A comparison of energy systems in Birmingham, UK, with Masdar City, an embryonic city in Abu Dhabi Emirate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1299-1309.
    12. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    13. CHEN, Helen S.Y., 2020. "Designing Sustainable Humanitarian Supply Chains," OSF Preprints m82ar, Center for Open Science.
    14. Jim Butcher, 2006. "The United Nations International Year of Ecotourism: a critical analysis of development implications," Progress in Development Studies, , vol. 6(2), pages 146-156, April.
    15. Denise Ravet, 2011. "Lean production: the link between supply chain and sustainable development in an international environment," Post-Print hal-00691666, HAL.
    16. Sibilla Montanari & Evi Agostini & Denis Francesconi, 2023. "Are We Talking about Green Skills or Sustainability Competences? A Scoping Review Using Scientometric Analysis of Two Apparently Similar Topics in the Field of Sustainability," Sustainability, MDPI, vol. 15(19), pages 1-25, September.
    17. Mara Del Baldo, 2012. "Corporate social responsibility and corporate governance in Italian SMEs: the experience of some “spirited businesses”," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 16(1), pages 1-36, February.
    18. Megan Devonald & Nicola Jones & Sally Youssef, 2022. "‘We Have No Hope for Anything’: Exploring Interconnected Economic, Social and Environmental Risks to Adolescents in Lebanon," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    19. Rigby, Dan & Woodhouse, Phil & Young, Trevor & Burton, Michael, 2001. "Constructing a farm level indicator of sustainable agricultural practice," Ecological Economics, Elsevier, vol. 39(3), pages 463-478, December.
    20. Michael Howes & Liana Wortley & Ruth Potts & Aysin Dedekorkut-Howes & Silvia Serrao-Neumann & Julie Davidson & Timothy Smith & Patrick Nunn, 2017. "Environmental Sustainability: A Case of Policy Implementation Failure?," Sustainability, MDPI, vol. 9(2), pages 1-17, January.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgeogr:v:4:y:2024:i:1:p:10-167:d:1346714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.