IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i3p97-d1595635.html
   My bibliography  Save this article

Optimizing Electric Vehicle Routing Efficiency Using K-Means Clustering and Genetic Algorithms

Author

Listed:
  • Tal Gaon

    (Department of Software Engineering, Braude College of Engineering, Karmiel 2161002, Israel
    These authors contributed equally to this work.)

  • Yovel Gabay

    (Department of Software Engineering, Braude College of Engineering, Karmiel 2161002, Israel
    These authors contributed equally to this work.)

  • Miri Weiss Cohen

    (Department of Software Engineering, Braude College of Engineering, Karmiel 2161002, Israel
    These authors contributed equally to this work.)

Abstract

Route planning for electric vehicles (EVs) is a critical challenge in sustainable transportation, as it directly addresses concerns about greenhouse gas emissions and energy efficiency. This study presents a novel approach that combines K-means clustering and GA optimization to create dynamic, real-world applicable routing solutions. This framework incorporates practical challenges, such as charging station queue lengths, which significantly influence travel time and energy consumption. Using K-means clustering, the methodology groups charging stations based on geographical proximity, allowing for optimal stop selection and minimizing unnecessary detours. GA optimization is used to refine these routes by evaluating key factors, including travel distance, queue dynamics, and time, to determine paths with the fewest charging stops while maintaining efficiency. By integrating these two techniques, the proposed framework achieves a balance between computational simplicity and adaptability to changing conditions. A series of experiments have demonstrated the framework’s ability to identify the shortest and least congested routes with strategically placed charging stops. The dynamic nature of the model ensures adaptability to evolving real-world scenarios, such as fluctuating queue lengths and travel demands. This research demonstrates the effectiveness of this approach for identifying the shortest, least congested routes with the most optimal charging stations, resulting in significant advancements in sustainable transportation and EV route optimization.

Suggested Citation

  • Tal Gaon & Yovel Gabay & Miri Weiss Cohen, 2025. "Optimizing Electric Vehicle Routing Efficiency Using K-Means Clustering and Genetic Algorithms," Future Internet, MDPI, vol. 17(3), pages 1-19, February.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:3:p:97-:d:1595635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/3/97/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/3/97/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Bhaskar P. Rimal & Cuiyu Kong & Bikrant Poudel & Yong Wang & Pratima Shahi, 2022. "Smart Electric Vehicle Charging in the Era of Internet of Vehicles, Emerging Trends, and Open Issues," Energies, MDPI, vol. 15(5), pages 1-24, March.
    3. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2019. "The electric vehicle routing problem with energy consumption uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 225-255.
    4. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    5. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    6. Dingding Qi & Yingjun Zhao & Zhengjun Wang & Wei Wang & Li Pi & Longyue Li, 2024. "Joint Approach for Vehicle Routing Problems Based on Genetic Algorithm and Graph Convolutional Network," Mathematics, MDPI, vol. 12(19), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    2. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    3. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    4. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    5. Yong Wang & Jingxin Zhou & Yaoyao Sun & Xiuwen Wang & Jiayi Zhe & Haizhong Wang, 2022. "Electric Vehicle Charging Station Location-Routing Problem with Time Windows and Resource Sharing," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    6. Yong Wang & Can Chen & Yuanhan Wei & Yuanfan Wei & Haizhong Wang, 2025. "Collaboration and Resource Sharing for the Multi-Depot Electric Vehicle Routing Problem with Time Windows and Dynamic Customer Demands," Sustainability, MDPI, vol. 17(6), pages 1-38, March.
    7. Hung, Ying-Chao & PakHai Lok, Horace & Michailidis, George, 2022. "Optimal routing for electric vehicle charging systems with stochastic demand: A heavy traffic approximation approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 526-541.
    8. Reyes, Damián & Erera, Alan L. & Savelsbergh, Martin W.P., 2018. "Complexity of routing problems with release dates and deadlines," European Journal of Operational Research, Elsevier, vol. 266(1), pages 29-34.
    9. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    10. Dessouky, Maged M & Hu, Shichun, 2021. "Dynamic Routing for Ride-Sharing," Institute of Transportation Studies, Working Paper Series qt6qq8r7hz, Institute of Transportation Studies, UC Davis.
    11. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "On-demand bus routing problem with dynamic stochastic requests and prepositioning," Working Papers 2022004, University of Antwerp, Faculty of Business and Economics.
    12. Ouyang, Kechen & Wang, David Z.W., 2025. "Optimal operation strategies for freight transport with electric vehicles considering wireless charging lanes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    13. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    14. Gitae Kim, 2024. "Electric Vehicle Routing Problem with States of Charging Stations," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    15. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    16. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    17. Mayerle, Sérgio Fernando & De Genaro Chiroli, Daiane Maria & Neiva de Figueiredo, João & Rodrigues, Hidelbrando Ferreira, 2020. "The long-haul full-load vehicle routing and truck driver scheduling problem with intermediate stops: An economic impact evaluation of Brazilian policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 36-51.
    18. Rubio, Francisco & Llopis-Albert, Carlos & Valero, Francisco, 2021. "Multi-objective optimization of costs and energy efficiency associated with autonomous industrial processes for sustainable growth," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    19. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    20. Cordeau, Jean-François & Dell’Amico, Mauro & Falavigna, Simone & Iori, Manuel, 2015. "A rolling horizon algorithm for auto-carrier transportation," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 68-80.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:3:p:97-:d:1595635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.