IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i10p470-d1769773.html

Multifractality and Its Sources in the Digital Currency Market

Author

Listed:
  • Stanisław Drożdż

    (Faculty of Computer Science and Mathematics, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
    Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
    These authors contributed equally to this work.)

  • Robert Kluszczyński

    (Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
    Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland
    These authors contributed equally to this work.)

  • Jarosław Kwapień

    (Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
    These authors contributed equally to this work.)

  • Marcin Wątorek

    (Faculty of Computer Science and Mathematics, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
    These authors contributed equally to this work.)

Abstract

Multifractality in time series analysis characterizes the presence of multiple scaling exponents, indicating heterogeneous temporal structures and complex dynamical behaviors beyond simple monofractal models. In the context of digital currency markets, multifractal properties arise due to the interplay of long-range temporal correlations and heavy-tailed distributions of returns, reflecting intricate market microstructure and trader interactions. Incorporating multifractal analysis into the modeling of cryptocurrency price dynamics enhances the understanding of market inefficiencies. It may also improve volatility forecasting and facilitate the detection of critical transitions or regime shifts. Based on the multifractal cross-correlation analysis (MFCCA) whose spacial case is the multifractal detrended fluctuation analysis (MFDFA), as the most commonly used practical tools for quantifying multifractality, we applied a recently proposed method of disentangling sources of multifractality in time series to the most representative instruments from the digital market. They include Bitcoin (BTC), Ethereum (ETH), decentralized exchanges (DEX) and non-fungible tokens (NFT). The results indicate the significant role of heavy tails in generating a broad multifractal spectrum. However, they also clearly demonstrate that the primary source of multifractality encompasses the temporal correlations in the series, and without them, multifractality fades out. It appears characteristic that these temporal correlations, to a large extent, do not depend on the thickness of the tails of the fluctuation distribution. These observations, made here in the context of the digital currency market, provide a further strong argument for the validity of the proposed methodology of disentangling sources of multifractality in time series.

Suggested Citation

  • Stanisław Drożdż & Robert Kluszczyński & Jarosław Kwapień & Marcin Wątorek, 2025. "Multifractality and Its Sources in the Digital Currency Market," Future Internet, MDPI, vol. 17(10), pages 1-23, October.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:10:p:470-:d:1769773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/10/470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/10/470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaros{l}aw Klamut & Ryszard Kutner & Tomasz Gubiec & Zbigniew R. Struzik, 2018. "The new face of multifractality: Multi-branchedness and the phase transitions in time series of mean inter-event times," Papers 1809.02674, arXiv.org, revised Apr 2020.
    2. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    3. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    4. Wei-Xing Zhou, 2009. "The components of empirical multifractality in financial returns," Papers 0908.1089, arXiv.org, revised Oct 2009.
    5. Kutner, Ryszard & Świtała, Filip, 2004. "Remarks on the possible universal mechanism of the non-linear long-term autocorrelations in financial time-series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 244-251.
    6. Drożdż, S. & Forczek, M. & Kwapień, J. & Oświe¸cimka, P. & Rak, R., 2007. "Stock market return distributions: From past to present," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 59-64.
    7. Jaros{l}aw Kwapie'n & Pawel Blasiak & Stanis{l}aw Dro.zd.z & Pawe{l} O'swik{e}cimka, 2022. "Genuine multifractality in time series is due to temporal correlations," Papers 2211.00728, arXiv.org, revised Mar 2023.
    8. Bui, Huy Quoc & Schinckus, Christophe & Al-Jaifi, Hamdan, 2025. "Long-range correlations in cryptocurrency markets: A multi-scale DFA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
    9. Pawe{l} O'swic{e}cimka & Stanis{l}aw Dro.zd.z & Marcin Forczek & Stanis{l}aw Jadach & Jaros{l}aw Kwapie'n, 2013. "Detrended Cross-Correlation Analysis Consistently Extended to Multifractality," Papers 1308.6148, arXiv.org, revised Feb 2014.
    10. Elie Bouri & Rangan Gupta & Xuan Vinh Vo, 2022. "Jumps in Geopolitical Risk and the Cryptocurrency Market: The Singularity of Bitcoin," Defence and Peace Economics, Taylor & Francis Journals, vol. 33(2), pages 150-161, February.
    11. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    12. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    13. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    14. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
    15. S. Drozdz & M. Forczek & J. Kwapien & P. Oswiecimka & R. Rak, 2007. "Stock market return distributions: from past to present," Papers 0704.0664, arXiv.org.
    16. James, Nick & Menzies, Max & Chan, Jennifer, 2021. "Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    17. Marcin Wk{a}torek & Marcin Kr'olczyk & Jaros{l}aw Kwapie'n & Tomasz Stanisz & Stanis{l}aw Dro.zd.z, 2024. "Approaching multifractal complexity in decentralized cryptocurrency trading," Papers 2411.05951, arXiv.org.
    18. Gil Cohen, 2023. "Intraday algorithmic trading strategies for cryptocurrencies," Review of Quantitative Finance and Accounting, Springer, vol. 61(1), pages 395-409, July.
    19. Marcin Wk{a}torek & Pawe{l} Szyd{l}o & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2024. "Correlations versus noise in the NFT market," Papers 2404.15495, arXiv.org, revised Jul 2024.
    20. Yi Fang & Qirui Tang & Yanru Wang, 2024. "Geopolitical Risk and Cryptocurrency Market Volatility," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 60(14), pages 3254-3270, November.
    21. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2023. "Cryptocurrencies Are Becoming Part of the World Global Financial Market," Papers 2303.00495, arXiv.org.
    22. oh, Gabjin & Kim, Seunghwan & Eom, Cheoljun, 2008. "Long-term memory and volatility clustering in high-frequency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1247-1254.
    23. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," LSE Research Online Documents on Economics 100409, London School of Economics and Political Science, LSE Library.
    24. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    25. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    26. Stanis{l}aw Dro.zd.z & Robert Gk{e}barowski & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marcin Wk{a}torek, 2018. "Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects," Papers 1804.05916, arXiv.org, revised Jul 2018.
    27. Tetsuya Takaishi & Takanori Adachi, 2020. "Market Efficiency, Liquidity, and Multifractality of Bitcoin: A Dynamic Study," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 145-154, March.
    28. Marcin Wk{a}torek & Maria Skupie'n & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2023. "Decomposing cryptocurrency high-frequency price dynamics into recurring and noisy components," Papers 2306.17095, arXiv.org, revised Aug 2023.
    29. Andrew Spurr & Marcel Ausloos, 2021. "Challenging practical features of Bitcoin by the main altcoins," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(5), pages 1541-1559, October.
    30. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    31. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    32. Pawe{l} Szyd{l}o & Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2023. "Characteristics of price related fluctuations in Non-Fungible Token (NFT) market," Papers 2310.19747, arXiv.org, revised Jan 2024.
    33. Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    34. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    35. Gil Cohen & Mahmoud Qadan, 2022. "The Complexity of Cryptocurrencies Algorithmic Trading," Mathematics, MDPI, vol. 10(12), pages 1-11, June.
    36. Robert Kluszczyński & Stanisław Drożdż & Jarosław Kwapień & Tomasz Stanisz & Marcin Wątorek, 2025. "Disentangling Sources of Multifractality in Time Series," Mathematics, MDPI, vol. 13(2), pages 1-32, January.
    37. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    38. Jaros{l}aw Kwapie'n & Marcin Wk{a}torek & Marija Bezbradica & Martin Crane & Tai Tan Mai & Stanis{l}aw Dro.zd.z, 2022. "Analysis of inter-transaction time fluctuations in the cryptocurrency market," Papers 2206.07831, arXiv.org, revised Sep 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Wk{a}torek & Marcin Kr'olczyk & Jaros{l}aw Kwapie'n & Tomasz Stanisz & Stanis{l}aw Dro.zd.z, 2024. "Approaching multifractal complexity in decentralized cryptocurrency trading," Papers 2411.05951, arXiv.org.
    2. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    3. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    4. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2022. "Multifractal cross-correlations of bitcoin and ether trading characteristics in the post-COVID-19 time," Papers 2208.01445, arXiv.org.
    5. Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
    6. Kristjanpoller, Werner & Nekhili, Ramzi & Bouri, Elie, 2024. "Blockchain ETFs and the cryptocurrency and Nasdaq markets: Multifractal and asymmetric cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    7. Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
    8. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Pawe{l} O'swik{e}cimka & Tomasz Stanisz & Marcin Wk{a}torek, 2020. "Complexity in economic and social systems: cryptocurrency market at around COVID-19," Papers 2009.10030, arXiv.org.
    9. Stanisław Drożdż & Ludovico Minati & Paweł Oświȩcimka & Marek Stanuszek & Marcin Wa̧torek, 2019. "Signatures of the Crypto-Currency Market Decoupling from the Forex," Future Internet, MDPI, vol. 11(7), pages 1-18, July.
    10. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    11. Shen, Na & Chen, Jiayi, 2023. "Asymmetric multifractal spectrum distribution based on detrending moving average cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    12. Ruan, Qingsong & Zhang, Manqian & Lv, Dayong & Yang, Haiquan, 2018. "SAD and stock returns revisited: Nonlinear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1009-1022.
    13. Jaros{l}aw Kwapie'n & Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z, 2021. "Cryptocurrency Market Consolidation in 2020--2021," Papers 2112.06552, arXiv.org.
    14. Stanis{l}aw Dro.zd.z & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek & Marcin Wk{a}torek, 2019. "Signatures of crypto-currency market decoupling from the Forex," Papers 1906.07834, arXiv.org, revised Jul 2019.
    15. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    16. Faheem Aslam & Paulo Ferreira & Haider Ali & Ana Ercília José, 2022. "Application of Multifractal Analysis in Estimating the Reaction of Energy Markets to Geopolitical Acts and Threats," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    17. Tetsuya Takaishi, 2025. "Impact of the COVID-19 pandemic on the financial market efficiency of price returns, absolute returns, and volatility increment: Evidence from stock and cryptocurrency markets," Papers 2504.18960, arXiv.org.
    18. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Yao, Can-Zhong & Lin, Ji-Nan & Zheng, Xu-Zhou, 2017. "Coupling detrended fluctuation analysis for multiple warehouse-out behavioral sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 75-90.
    20. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:10:p:470-:d:1769773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.