IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1308.6148.html
   My bibliography  Save this paper

Detrended Cross-Correlation Analysis Consistently Extended to Multifractality

Author

Listed:
  • Pawe{l} O'swic{e}cimka
  • Stanis{l}aw Dro.zd.z
  • Marcin Forczek
  • Stanis{l}aw Jadach
  • Jaros{l}aw Kwapie'n

Abstract

We propose a novel algorithm - Multifractal Cross-Correlation Analysis (MFCCA) - that constitutes a consistent extension of the Detrended Cross-Correlation Analysis (DCCA) and is able to properly identify and quantify subtle characteristics of multifractal cross-correlations between two time series. Our motivation for introducing this algorithm is that the already existing methods like MF-DXA have at best serious limitations for most of the signals describing complex natural processes and often indicate multifractal cross-correlations when there are none. The principal component of the present extension is proper incorporation of the sign of fluctuations to their generalized moments. Furthermore, we present a broad analysis of the model fractal stochastic processes as well as of the real-world signals and show that MFCCA is a robust and selective tool at the same time, and therefore allows for a reliable quantification of the cross-correlative structure of analyzed processes. In particular, it allows one to identify the boundaries of the multifractal scaling and to analyze a relation between the generalized Hurst exponent and the multifractal scaling parameter $\lambda_q$. This relation provides information about character of potential multifractality in cross-correlations and thus enables a deeper insight into dynamics of the analyzed processes than allowed by any other related method available so far. By using examples of time series from stock market, we show that financial fluctuations typically cross-correlate multifractally only for relatively large fluctuations, whereas small fluctuations remain mutually independent even at maximum of such cross-correlations. Finally, we indicate possible utility of MFCCA to study effects of the time-lagged cross-correlations.

Suggested Citation

  • Pawe{l} O'swic{e}cimka & Stanis{l}aw Dro.zd.z & Marcin Forczek & Stanis{l}aw Jadach & Jaros{l}aw Kwapie'n, 2013. "Detrended Cross-Correlation Analysis Consistently Extended to Multifractality," Papers 1308.6148, arXiv.org, revised Feb 2014.
  • Handle: RePEc:arx:papers:1308.6148
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1308.6148
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linares, L. Oriana & Li, MinMin & Shrout, Patrick E., 2012. "Child training for physical aggression?," Children and Youth Services Review, Elsevier, vol. 34(12), pages 2416-2422.
    2. He, Ling-Yun & Chen, Shu-Peng, 2011. "Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 355-361.
    3. He, Ling-Yun & Chen, Shu-Peng, 2011. "Nonlinear bivariate dependency of price–volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 297-308.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    2. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    3. Li, Huajiao & An, Haizhong & Liu, Xueyong & Gao, Xiangyun & Fang, Wei & An, Feng, 2016. "Price fluctuation in the energy stock market based on fluctuation and co-fluctuation matrix transmission networks," Energy, Elsevier, vol. 117(P1), pages 73-83.
    4. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    5. Linan Sun & Antao Wang & Jiayao Wang, 2022. "Spatial Characteristics Analysis for Coupling Strength among Air Pollutants during a Severe Haze Period in Zhengzhou, China," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    6. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing For Intrinsic Multifractality In The Global Grain Spot Market Indices: A Multifractal Detrended Fluctuation Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-24.
    7. Wang, Gang-Jin & Xie, Chi, 2013. "Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1418-1428.
    8. Telli, Şahin & Chen, Hongzhuan, 2021. "Multifractal behavior relationship between crypto markets and Wikipedia-Reddit online platforms," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Telli, Şahin & Chen, Hongzhuan & Zhao, Xufeng, 2022. "Detecting multifractality and exposing distributions of local fluctuations: Detrended fluctuation analysis with descriptive statistics pooling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    11. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    12. Wang, Yi & Sun, Qi & Zhang, Zilu & Chen, Liqing, 2022. "A risk measure of the stock market that is based on multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    13. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    14. Ma, Feng & Wei, Yu & Huang, Dengshi & Zhao, Lin, 2013. "Cross-correlations between West Texas Intermediate crude oil and the stock markets of the BRIC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5356-5368.
    15. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
    16. Liu, Li, 2014. "Cross-correlations between crude oil and agricultural commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 293-302.
    17. repec:arx:papers:1501.02947 is not listed on IDEAS
    18. Li, Zhihui & Lu, Xinsheng, 2012. "Cross-correlations between agricultural commodity futures markets in the US and China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3930-3941.
    19. Kristoufek, Ladislav, 2015. "Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 194-205.
    20. Kristoufek, Ladislav, 2015. "Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 124-127.
    21. Kristoufek, Ladislav, 2014. "Measuring correlations between non-stationary series with DCCA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 291-298.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1308.6148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.