IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i9p245-d895425.html
   My bibliography  Save this article

Artificial Intelligence in Adaptive and Intelligent Educational System: A Review

Author

Listed:
  • Jingwen Dong

    (Faculty of Computer Science & Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Siti Nurulain Mohd Rum

    (Faculty of Computer Science & Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Khairul Azhar Kasmiran

    (Faculty of Computer Science & Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Teh Noranis Mohd Aris

    (Faculty of Computer Science & Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Raihani Mohamed

    (Faculty of Computer Science & Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia)

Abstract

There has been much discussion among academics on how pupils may be taught online while yet maintaining a high degree of learning efficiency, in part because of the worldwide COVID-19 pandemic in the previous two years. Students may have trouble focusing due to a lack of teacher–student interaction, yet online learning has some advantages that are unavailable in traditional classrooms. The architecture of online courses for students is integrated into a system called the Adaptive and Intelligent Education System (AIES). In AIESs, reinforcement learning is often used in conjunction with the development of teaching strategies, and this reinforcement-learning-based system is known as RLATES. As a prerequisite to conducting research in this field, this paper undertakes the consolidation and analysis of existing research, design approaches, and model categories for adaptive and intelligent educational systems, with the hope of serving as a reference for scholars in the same field to help them gain access to the relevant information quickly and easily.

Suggested Citation

  • Jingwen Dong & Siti Nurulain Mohd Rum & Khairul Azhar Kasmiran & Teh Noranis Mohd Aris & Raihani Mohamed, 2022. "Artificial Intelligence in Adaptive and Intelligent Educational System: A Review," Future Internet, MDPI, vol. 14(9), pages 1-11, August.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:9:p:245-:d:895425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/9/245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/9/245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
    2. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robertson, Jeandri & Ferreira, Caitlin & Botha, Elsamari & Oosthuizen, Kim, 2024. "Game changers: A generative AI prompt protocol to enhance human-AI knowledge co-construction," Business Horizons, Elsevier, vol. 67(5), pages 499-510.
    2. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    3. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    4. Lixiang Zhang & Yan Yan & Yaoguang Hu, 2024. "Deep reinforcement learning for dynamic scheduling of energy-efficient automated guided vehicles," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3875-3888, December.
    5. Benjamin Heinbach & Peter Burggräf & Johannes Wagner, 2024. "gym-flp: A Python Package for Training Reinforcement Learning Algorithms on Facility Layout Problems," SN Operations Research Forum, Springer, vol. 5(1), pages 1-26, March.
    6. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    7. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    8. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    9. Pedro Reis & Ana Paula Serra & Jo~ao Gama, 2025. "The Role of Deep Learning in Financial Asset Management: A Systematic Review," Papers 2503.01591, arXiv.org.
    10. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
    11. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    12. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    13. Bavaresco, Rodrigo Simon & Nesi, Luan Carlos & Victória Barbosa, Jorge Luis & Antunes, Rodolfo Stoffel & da Rosa Righi, Rodrigo & da Costa, Cristiano André & Vanzin, Mariangela & Dornelles, Daniel & J, 2023. "Machine learning-based automation of accounting services: An exploratory case study," International Journal of Accounting Information Systems, Elsevier, vol. 49(C).
    14. Zhang, Huixian & Wei, Xiukun & Liu, Zhiqiang & Ding, Yaning & Guan, Qingluan, 2025. "Condition-based maintenance for multi-state systems with prognostic and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    15. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    16. Ande Chang & Yuting Ji & Chunguang Wang & Yiming Bie, 2024. "CVDMARL: A Communication-Enhanced Value Decomposition Multi-Agent Reinforcement Learning Traffic Signal Control Method," Sustainability, MDPI, vol. 16(5), pages 1-17, March.
    17. Fernandez Martinez, Roberto & Lostado Lorza, Ruben & Santos Delgado, Ana Alexandra & Piedra, Nelson, 2021. "Use of classification trees and rule-based models to optimize the funding assignment to research projects: A case study of UTPL," Journal of Informetrics, Elsevier, vol. 15(1).
    18. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    19. Zhang, Yang & Yang, Qingyu & Li, Donghe & An, Dou, 2022. "A reinforcement and imitation learning method for pricing strategy of electricity retailer with customers’ flexibility," Applied Energy, Elsevier, vol. 323(C).
    20. He, Jing & Liu, Xinglu & Duan, Qiyao & Chan, Wai Kin (Victor) & Qi, Mingyao, 2023. "Reinforcement learning for multi-item retrieval in the puzzle-based storage system," European Journal of Operational Research, Elsevier, vol. 305(2), pages 820-837.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:9:p:245-:d:895425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.