IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v11y2019i2p51-d207067.html
   My bibliography  Save this article

A Fusion Load Disaggregation Method Based on Clustering Algorithm and Support Vector Regression Optimization for Low Sampling Data

Author

Listed:
  • Quanbo Yuan

    (School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang 065000, China
    The School of Computer Software, Tianjin University, Tianjin 300354, China)

  • Huijuan Wang

    (School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang 065000, China
    State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China)

  • Botao Wu

    (Department of Automotive Engineering, Hebei Institute of Machinery and Electricity, Xintai 054000, China)

  • Yaodong Song

    (School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang 065000, China)

  • Hejia Wang

    (The School of Computer Software, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

In order to achieve more efficient energy consumption, it is crucial that accurate detailed information is given on how power is consumed. Electricity details benefit both market utilities and also power consumers. Non-intrusive load monitoring (NILM), a novel and economic technology, obtains single-appliance power consumption through a single total power meter. This paper, focusing on load disaggregation with low hardware costs, proposed a load disaggregation method for low sampling data from smart meters based on a clustering algorithm and support vector regression optimization. This approach combines the k-median algorithm and dynamic time warping to identify the operating appliance and retrieves single energy consumption from an aggregate smart meter signal via optimized support vector regression (OSVR). Experiments showed that the technique can recognize multiple devices switching on at the same time using low-frequency data and achieve a high load disaggregation performance. The proposed method employs low sampling data acquired by smart meters without installing extra measurement equipment, which lowers hardware cost and is suitable for applications in smart grid environments.

Suggested Citation

  • Quanbo Yuan & Huijuan Wang & Botao Wu & Yaodong Song & Hejia Wang, 2019. "A Fusion Load Disaggregation Method Based on Clustering Algorithm and Support Vector Regression Optimization for Low Sampling Data," Future Internet, MDPI, vol. 11(2), pages 1-13, February.
  • Handle: RePEc:gam:jftint:v:11:y:2019:i:2:p:51-:d:207067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/11/2/51/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/11/2/51/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brudermueller, Tobias & Kreft, Markus & Fleisch, Elgar & Staake, Thorsten, 2023. "Large-scale monitoring of residential heat pump cycling using smart meter data," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Zhou, Yang & Shi, Zhixiong & Shi, Zhengyu & Gao, Qing & Wu, Libo, 2019. "Disaggregating power consumption of commercial buildings based on the finite mixture model," Applied Energy, Elsevier, vol. 243(C), pages 35-46.
    3. Lang, Corey & Okwelum, Edson, 2015. "The mitigating effect of strategic behavior on the net benefits of a direct load control program," Energy Economics, Elsevier, vol. 49(C), pages 141-148.
    4. Coelho, Igor M. & Coelho, Vitor N. & Luz, Eduardo J. da S. & Ochi, Luiz S. & Guimarães, Frederico G. & Rios, Eyder, 2017. "A GPU deep learning metaheuristic based model for time series forecasting," Applied Energy, Elsevier, vol. 201(C), pages 412-418.
    5. Astier, Nicolas, 2018. "Comparative feedbacks under incomplete information," Resource and Energy Economics, Elsevier, vol. 54(C), pages 90-108.
    6. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    7. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.
    8. Nicolas Astier, 2016. "Comparative Feedbacks under Incomplete Information," Working Papers hal-01465189, HAL.
    9. Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
    10. Matteo Caldera & Asad Hussain & Sabrina Romano & Valerio Re, 2023. "Energy-Consumption Pattern-Detecting Technique for Household Appliances for Smart Home Platform," Energies, MDPI, vol. 16(2), pages 1-23, January.
    11. Hosseini, Sayed Saeed & Agbossou, Kodjo & Kelouwani, Sousso & Cardenas, Alben, 2017. "Non-intrusive load monitoring through home energy management systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1266-1274.
    12. Chen, Victor L. & Delmas, Magali A. & Kaiser, William J. & Locke, Stephen L., 2015. "What can we learn from high-frequency appliance-level energy metering? Results from a field experiment," Energy Policy, Elsevier, vol. 77(C), pages 164-175.
    13. Quaglione, Davide & Cassetta, Ernesto & Crociata, Alessandro & Sarra, Alessandro, 2017. "Exploring additional determinants of energy-saving behaviour: The influence of individuals' participation in cultural activities," Energy Policy, Elsevier, vol. 108(C), pages 503-511.
    14. Lesley Thomson & David Jenkins, 2023. "The Use of Real Energy Consumption Data in Characterising Residential Energy Demand with an Inventory of UK Datasets," Energies, MDPI, vol. 16(16), pages 1-29, August.
    15. Hasan Rafiq & Xiaohan Shi & Hengxu Zhang & Huimin Li & Manesh Kumar Ochani, 2020. "A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on Multi-Feature Input Space and Post-Processing," Energies, MDPI, vol. 13(9), pages 1-26, May.
    16. Claudia Bustamante & Stephen Bird & Lisa Legault & Susan E. Powers, 2023. "Energy Hogs and Misers: Magnitude and Variability of Individuals’ Household Electricity Consumption," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    17. Enríquez, R. & Jiménez, M.J. & Heras, M.R., 2017. "Towards non-intrusive thermal load Monitoring of buildings: BES calibration," Applied Energy, Elsevier, vol. 191(C), pages 44-54.
    18. Darío Baptista & Sheikh Shanawaz Mostafa & Lucas Pereira & Leonel Sousa & Fernando Morgado-Dias, 2018. "Implementation Strategy of Convolution Neural Networks on Field Programmable Gate Arrays for Appliance Classification Using the Voltage and Current (V-I) Trajectory," Energies, MDPI, vol. 11(9), pages 1-18, September.
    19. Sara Tavakoli & Kaveh Khalilpour, 2021. "A Practical Load Disaggregation Approach for Monitoring Industrial Users Demand with Limited Data Availability," Energies, MDPI, vol. 14(16), pages 1-27, August.
    20. Alexis Gerossier & Robin Girard & Alexis Bocquet & George Kariniotakis, 2018. "Robust Day-Ahead Forecasting of Household Electricity Demand and Operational Challenges," Energies, MDPI, vol. 11(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:11:y:2019:i:2:p:51-:d:207067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.