IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v6y2024i4p45-924d1501894.html
   My bibliography  Save this article

Does Google Analytics Improve the Prediction of Tourism Demand Recovery?

Author

Listed:
  • Ilsé Botha

    (School of Accounting, Department of Accountancy, College of Business and Economics, University of Johannesburg, Aucklandpark Campus, Johannesburg 2006, South Africa)

  • Andrea Saayman

    (School of Economic Sciences and Tourism Research in Economics, Environs and Society (TREES), North West University, Potchefstroom Campus, Potchefstroom 2531, South Africa)

Abstract

Research shows that Google Trend indices can improve tourism-demand forecasts. Given the impact of the recent pandemic, this may prove to be an important predictor of tourism recovery in countries that are still struggling to recover, including South Africa. The purpose of this paper is firstly, to build on previous research that indicates that Google Trends improves tourism-demand forecasting by testing this within the context of tourism recovery. Secondly, this paper extends previous research by not only including Google Trends in time-series forecasting models but also typical tourism-demand covariates in an econometric specification. Finally, we test the performance of Google Trends in forecasting over a longer time period, because the destination country is a long-haul destination where more lead time may be required in decision-making. Additionally, this research contributes to the body of knowledge by including lower frequency data (quarterly) instead of the higher frequency data commonly used in current research, while also focusing on an important destination country in Africa. Due to the differing data frequencies, the MIDAS modelling approach is used. The MIDAS models are compared to typical time-series and naïve benchmarks. The findings show that monthly Google Trends improve forecasts on lower frequency data. Furthermore, forecasts that include Google Trends are more effective in forecasting one to two quarters ahead, pre-COVID. This trend changed after COVID, when Google Trends led to improved recovery forecasts even over a longer term.

Suggested Citation

  • Ilsé Botha & Andrea Saayman, 2024. "Does Google Analytics Improve the Prediction of Tourism Demand Recovery?," Forecasting, MDPI, vol. 6(4), pages 1-17, October.
  • Handle: RePEc:gam:jforec:v:6:y:2024:i:4:p:45-924:d:1501894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/6/4/45/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/6/4/45/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    2. Liu, Yuan-Yuan & Tseng, Fang-Mei & Tseng, Yi-Heng, 2018. "Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 123-134.
    3. Maximo Camacho & Matías José Pacce, 2018. "Forecasting travellers in Spain with Google’s search volume indices," Tourism Economics, , vol. 24(4), pages 434-448, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
    2. Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
    3. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
    4. Gang Xie & Xin Li & Yatong Qian & Shouyang Wang, 2021. "Forecasting tourism demand with KPCA-based web search indexes," Tourism Economics, , vol. 27(4), pages 721-743, June.
    5. Katerina Volchek & Anyu Liu & Haiyan Song & Dimitrios Buhalis, 2019. "Forecasting tourist arrivals at attractions: Search engine empowered methodologies," Tourism Economics, , vol. 25(3), pages 425-447, May.
    6. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    7. García, Juan R. & Pacce, Matías & Rodrigo, Tomasa & Ruiz de Aguirre, Pep & Ulloa, Camilo A., 2021. "Measuring and forecasting retail trade in real time using card transactional data," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1235-1246.
    8. Li, Cheng & Ge, Peng & Liu, Zhusheng & Zheng, Weimin, 2020. "Forecasting tourist arrivals using denoising and potential factors," Annals of Tourism Research, Elsevier, vol. 83(C).
    9. Ahmed Shoukry Rashad, 2022. "The Power of Travel Search Data in Forecasting the Tourism Demand in Dubai," Forecasting, MDPI, vol. 4(3), pages 1-11, July.
    10. Jianxin Zhang & Yuting Yan & Jinyue Zhang & Peixue Liu & Li Ma, 2023. "Investigating the Spatial-Temporal Variation of Pre-Trip Searching in an Urban Agglomeration," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    11. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    12. van der Wielen, Wouter & Barrios, Salvador, 2021. "Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU," Journal of Economics and Business, Elsevier, vol. 115(C).
    13. Mioara, POPESCU, 2015. "Construction Of Economic Indicators Using Internet Searches," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 6(1), pages 25-31.
    14. Francesco Capozza & Ingar Haaland & Christopher Roth & Johannes Wohlfart, 2021. "Studying Information Acquisition in the Field: A Practical Guide and Review," CEBI working paper series 21-15, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
    15. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.
    16. Kučerová, Zuzana & Pakši, Daniel & Koňařík, Vojtěch, 2024. "Macroeconomic fundamentals and attention: What drives european consumers’ inflation expectations?," Economic Systems, Elsevier, vol. 48(1).
    17. David W Carter & Scott Crosson & Christopher Liese, 2015. "Nowcasting Intraseasonal Recreational Fishing Harvest with Internet Search Volume," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-18, September.
    18. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    19. C. Douglas Swearingen & Joseph T. Ripberger, 2014. "Google Insights and U.S. Senate Elections: Does Search Traffic Provide a Valid Measure of Public Attention to Political Candidates?," Social Science Quarterly, Southwestern Social Science Association, vol. 95(3), pages 882-893, September.
    20. Nathan, Max & Rosso, Anna, 2014. "Mapping information economy businesses with big data: findings from the UK," LSE Research Online Documents on Economics 60615, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:4:p:45-924:d:1501894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.