IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p628-d75680.html
   My bibliography  Save this article

Perspectives on Near ZEB Renovation Projects for Residential Buildings: The Spanish Case

Author

Listed:
  • Faustino Patiño-Cambeiro

    (Centro de Ciências Exatas e Tecnológicas, Centro Universitário Univates, Rua Avelino Tallini 171, Lajeado/RS 95900-000, Brazil)

  • Julia Armesto

    (Mining Engineering School, University of Vigo, Campus as Lagoas Marcosende, Vigo 36310, Spain)

  • Faustino Patiño-Barbeito

    (Industrial Engineering School, University of Vigo, Rúa Conde de Torrecedeira 86, Vigo 36208, Spain)

  • Guillermo Bastos

    (Industrial Engineering School, University of Vigo, Rúa Conde de Torrecedeira 86, Vigo 36208, Spain)

Abstract

EU regulations are gradually moving towards policies that reduce energy consumption and its environmental impact. To reach this goal, improving energy efficiency in residential buildings is a key action line. The European Parliament adopted the Near Zero-Energy Building (nZEB) as the energy efficiency paradigm through Directive 2010/31/EU, but a common technical and legislative framework for energy renovations is yet to be established. In this paper, the nZEB definition by COHERENO was adopted to evaluate several energy renovation packages in a given building, which is also representative of the Spanish building stock. Global costs are calculated for all of them following EPBD prescriptions. Two economic scenarios are analysed: with entirely private funding and with the current public financial incentives, respectively. The results show the divergence between optimum solutions in terms of costs and of minimum CO 2 footprint and maximum energy saving. Moreover, in the absence of enough incentives, some inefficient renovations could achieve a global cost close to the optimal cost. The optimum solution both in terms of energy performance and global costs was carried out and described.

Suggested Citation

  • Faustino Patiño-Cambeiro & Julia Armesto & Faustino Patiño-Barbeito & Guillermo Bastos, 2016. "Perspectives on Near ZEB Renovation Projects for Residential Buildings: The Spanish Case," Energies, MDPI, vol. 9(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:628-:d:75680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/628/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marszal, Anna Joanna & Heiselberg, Per, 2011. "Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark," Energy, Elsevier, vol. 36(9), pages 5600-5609.
    2. Giuliano Dall'O' & Valentina Belli & Mauro Brolis & Ivan Mozzi & Mauro Fasano, 2013. "Nearly Zero-Energy Buildings of the Lombardy Region (Italy), a Case Study of High-Energy Performance Buildings," Energies, MDPI, vol. 6(7), pages 1-22, July.
    3. Kylili, Angeliki & Fokaides, Paris A. & Lopez Jimenez, Petra Amparo, 2016. "Key Performance Indicators (KPIs) approach in buildings renovation for the sustainability of the built environment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 906-915.
    4. Giuseppe Bonazzi & Mattia Iotti, 2016. "Evaluation of Investment in Renovation to Increase the Quality of Buildings: A Specific Discounted Cash Flow ( DCF ) Approach of Appraisal," Sustainability, MDPI, vol. 8(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Francisco J. Rey-Martínez, 2018. "Energy Analysis at a Near Zero Energy Building. A Case-Study in Spain," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Paolo Maria Congedo & Delia D’Agostino & Cristina Baglivo & Giuliano Tornese & Ilaria Zacà, 2016. "Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings," Energies, MDPI, vol. 9(10), pages 1-24, October.
    4. Richard Thygesen, 2017. "An Analysis of Different Solar-Assisted Heating Systems and Their Effect on the Energy Performance of Multifamily Buildings—A Swedish Case," Energies, MDPI, vol. 10(1), pages 1-16, January.
    5. Ilaria Ballarini & Vincenzo Corrado, 2017. "A New Methodology for Assessing the Energy Consumption of Building Stocks," Energies, MDPI, vol. 10(8), pages 1-22, July.
    6. Uk-Joo Sung & Seok-Hyun Kim, 2019. "Development of a Passive and Active Technology Package Standard and Database for Application to Zero Energy Buildings in South Korea," Energies, MDPI, vol. 12(9), pages 1-23, May.
    7. Peep Pihelo & Kalle Kuusk & Targo Kalamees, 2020. "Development and Performance Assessment of Prefabricated Insulation Elements for Deep Energy Renovation of Apartment Buildings," Energies, MDPI, vol. 13(7), pages 1-20, April.
    8. Steffen Nielsen & Lars Grundahl, 2018. "District Heating Expansion Potential with Low-Temperature and End-Use Heat Savings," Energies, MDPI, vol. 11(2), pages 1-17, January.
    9. Ramón Barberán & Diego Colás & Pilar Egea, 2019. "Water Supply and Energy in Residential Buildings: Potential Savings and Financial Profitability," Sustainability, MDPI, vol. 11(1), pages 1-12, January.
    10. Hamburg, Anti & Kuusk, Kalle & Mikola, Alo & Kalamees, Targo, 2020. "Realisation of energy performance targets of an old apartment building renovated to nZEB," Energy, Elsevier, vol. 194(C).
    11. Faustino Patiño-Cambeiro & Guillermo Bastos & Julia Armesto & Faustino Patiño-Barbeito, 2017. "Multidisciplinary Energy Assessment of Tertiary Buildings: Automated Geomatic Inspection, Building Information Modeling Reconstruction and Building Performance Simulation," Energies, MDPI, vol. 10(7), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Cinzia Buratti & Francesco Asdrubali & Domenico Palladino & Antonella Rotili, 2015. "Energy Performance Database of Building Heritage in the Region of Umbria, Central Italy," Energies, MDPI, vol. 8(7), pages 1-18, July.
    3. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    4. Anna Laura Pisello, 2015. "Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings," Energies, MDPI, vol. 8(3), pages 1-14, March.
    5. Yuting Qi & Queena Qian & Frits Meijer & Henk Visscher, 2020. "Causes of Quality Failures in Building Energy Renovation Projects of Northern China: A Review and Empirical Study," Energies, MDPI, vol. 13(10), pages 1-19, May.
    6. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    7. Diakaki, Christina & Grigoroudis, Evangelos & Kolokotsa, Dionyssia, 2013. "Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings," Energy, Elsevier, vol. 59(C), pages 534-542.
    8. Irjayanti Maya & Azis Anton Mulyono, 2021. "Quality Management for Leather Industry to Increase Competitiveness in the Global Market," HOLISTICA – Journal of Business and Public Administration, Sciendo, vol. 12(2), pages 16-30, August.
    9. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    10. Droutsa, Kalliopi G. & Kontoyiannidis, Simon & Dascalaki, Elena G. & Balaras, Constantinos A., 2016. "Mapping the energy performance of hellenic residential buildings from EPC (energy performance certificate) data," Energy, Elsevier, vol. 98(C), pages 284-295.
    11. Mohammad Masfiqul Alam Bhuiyan & Ahmed Hammad, 2023. "A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction," Sustainability, MDPI, vol. 15(4), pages 1-36, February.
    12. Verhaeghe, C. & Verbeke, S. & Audenaert, A., 2021. "A consistent taxonomic framework: towards common understanding of high energy performance building definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. Francesco Mancini & Gianluigi Lo Basso & Livio de Santoli, 2019. "Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy Performance and Flexibility," Energies, MDPI, vol. 12(15), pages 1-21, July.
    14. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    15. Marszal, Anna Joanna & Heiselberg, Per & Lund Jensen, Rasmus & Nørgaard, Jesper, 2012. "On-site or off-site renewable energy supply options? Life cycle cost analysis of a Net Zero Energy Building in Denmark," Renewable Energy, Elsevier, vol. 44(C), pages 154-165.
    16. Sergio Bruno & Maria Dicorato & Massimo La Scala & Roberto Sbrizzai & Pio Alessandro Lombardi & Bartlomiej Arendarski, 2019. "Optimal Sizing and Operation of Electric and Thermal Storage in a Net Zero Multi Energy System," Energies, MDPI, vol. 12(17), pages 1-16, September.
    17. Mohamed, Ayman & Hasan, Ala & Sirén, Kai, 2014. "Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives," Applied Energy, Elsevier, vol. 114(C), pages 385-399.
    18. Josiana El Hage & Isam Shahrour & Fadi Hage Chehade & Faten Abi Farraj, 2023. "A Comprehensive Assessment of Buildings for Post-Disaster Sustainable Reconstruction: A Case Study of Beirut Port," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    19. Francesco Mancini & Benedetto Nastasi, 2019. "Energy Retrofitting Effects on the Energy Flexibility of Dwellings," Energies, MDPI, vol. 12(14), pages 1-19, July.
    20. Sharfuddin Ahmed Khan & Muhammad Shujaat Mubarik & Simonov Kusi‐Sarpong & Syed Imran Zaman & Syed Hasnain Alam Kazmi, 2021. "Social sustainable supply chains in the food industry: A perspective of an emerging economy," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(1), pages 404-418, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:628-:d:75680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.