IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1700-d228456.html
   My bibliography  Save this article

Development of a Passive and Active Technology Package Standard and Database for Application to Zero Energy Buildings in South Korea

Author

Listed:
  • Uk-Joo Sung

    (Center for Climatic Environment Real-scale Testing, Korea Conformity Laboratories, Jincheon 27872, Korea)

  • Seok-Hyun Kim

    (Energy ICT·ESS Laboratory, Korea Institute of Energy Research, Daejeon 34101, Korea)

Abstract

There is much research on zero energy buildings. In this paper, technologies and policies to improve the building energy efficiency of zero energy buildings are presented. The zero energy building certification system in Korea is introduced, and the evaluation is carried out based on the energy self-reliance rate that enables zero energy buildings. Zero energy buildings are able to minimize energy consumption due to the application of highly efficient building materials and equipment technology. In this research, to increase the prevalence of zero energy buildings in Korea, the authors propose a zero energy building technology package. Using a passive and active technology package, we confirmed the necessity and detailed requirements of each technology parameter. We analyze and classify Korean building material testing methods and performance standards, and propose passive and active technology packages, modules, material performance testing methods and minimum requirement performance standards. Finally, this study proposed a table presenting the test methods, standard and minimum value of performance. By these results, the authors confirmed the effectiveness and availability of passive and active technical packages.

Suggested Citation

  • Uk-Joo Sung & Seok-Hyun Kim, 2019. "Development of a Passive and Active Technology Package Standard and Database for Application to Zero Energy Buildings in South Korea," Energies, MDPI, vol. 12(9), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1700-:d:228456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Audenaert, A. & De Cleyn, S.H. & Vankerckhove, B., 2008. "Economic analysis of passive houses and low-energy houses compared with standard houses," Energy Policy, Elsevier, vol. 36(1), pages 47-55, January.
    2. Jisoo Shim & Doosam Song & Joowook Kim, 2018. "The Economic Feasibility of Passive Houses in Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    3. Yeweon Kim & Ki-Hyung Yu, 2018. "Study on Policy Marking of Passive Level Insulation Standards for Non-Residential Buildings in South Korea," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    4. Faustino Patiño-Cambeiro & Julia Armesto & Faustino Patiño-Barbeito & Guillermo Bastos, 2016. "Perspectives on Near ZEB Renovation Projects for Residential Buildings: The Spanish Case," Energies, MDPI, vol. 9(8), pages 1-16, August.
    5. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shicong & Xu, Wei & Wang, Ke & Feng, Wei & Athienitis, Andreas & Hua, Ge & Okumiya, Masaya & Yoon, Gyuyoung & Cho, Dong woo & Iyer-Raniga, Usha & Mazria, Edward & Lyu, Yanjie, 2020. "Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050," Energy, Elsevier, vol. 213(C).
    2. Seongjo Wang & Sungho Tae & Hyeongjae Jang, 2021. "Prediction of the Energy Self-Sufficiency Rate of Major New Renewable Energy Types Based on Zero-Energy Building Certification Cases in South Korea," Sustainability, MDPI, vol. 13(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karel Struhala & Miroslav Čekon & Richard Slávik, 2018. "Life Cycle Assessment of Solar Façade Concepts Based on Transparent Insulation Materials," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    2. Peep Pihelo & Kalle Kuusk & Targo Kalamees, 2020. "Development and Performance Assessment of Prefabricated Insulation Elements for Deep Energy Renovation of Apartment Buildings," Energies, MDPI, vol. 13(7), pages 1-20, April.
    3. Lin, Tyrone T. & Huang, Shio-Ling, 2011. "Application of the modified Tobin's q to an uncertain energy-saving project with the real options concept," Energy Policy, Elsevier, vol. 39(1), pages 408-420, January.
    4. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    5. Georges Atallah & Faris Tarlochan, 2021. "Comparison between Variable and Constant Refrigerant Flow Air Conditioning Systems in Arid Climate: Life Cycle Cost Analysis and Energy Savings," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    6. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    8. Joohyun Lee & Mardelle McCuskey Shepley & Jungmann Choi, 2021. "Analysis of Professionals’ and the General Public’s Perceptions of Passive Houses in Korea: Needs Assessment for the Improvement of the Energy Efficiency and Indoor Environmental Quality," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    9. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Sergio L. González-González & Francisco J. Rey-Martínez, 2018. "Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study," Energies, MDPI, vol. 11(11), pages 1-17, November.
    10. Georges, L. & Massart, C. & Van Moeseke, G. & De Herde, A., 2012. "Environmental and economic performance of heating systems for energy-efficient dwellings: Case of passive and low-energy single-family houses," Energy Policy, Elsevier, vol. 40(C), pages 452-464.
    11. Soršak, Marko & Leskovar, Vesna Žegarac & Premrov, Miroslav & Goričanec, Darko & Pšunder, Igor, 2014. "Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia," Energy, Elsevier, vol. 77(C), pages 57-65.
    12. Jisoo Shim & Doosam Song & Joowook Kim, 2018. "The Economic Feasibility of Passive Houses in Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    13. Hamburg, Anti & Kuusk, Kalle & Mikola, Alo & Kalamees, Targo, 2020. "Realisation of energy performance targets of an old apartment building renovated to nZEB," Energy, Elsevier, vol. 194(C).
    14. Adrian Pitts, 2017. "Passive House and Low Energy Buildings: Barriers and Opportunities for Future Development within UK Practice," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    15. María Beatriz Piderit & Franklin Vivanco & Geoffrey van Moeseke & Shady Attia, 2019. "Net Zero Buildings—A Framework for an Integrated Policy in Chile," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    16. Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Piotr Gradziuk, 2020. "Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets," Energies, MDPI, vol. 13(24), pages 1-18, December.
    17. Ramón Barberán & Diego Colás & Pilar Egea, 2019. "Water Supply and Energy in Residential Buildings: Potential Savings and Financial Profitability," Sustainability, MDPI, vol. 11(1), pages 1-12, January.
    18. Insub Choi & JunHee Kim & DongWon Kim, 2020. "LCA-Based Investigation of Environmental Impacts for Novel Double-Beam Floor System Subjected to High Gravity Loads," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    19. Saari, Arto & Kalamees, Targo & Jokisalo, Juha & Michelsson, Rasmus & Alanne, Kari & Kurnitski, Jarek, 2012. "Financial viability of energy-efficiency measures in a new detached house design in Finland," Applied Energy, Elsevier, vol. 92(C), pages 76-83.
    20. Xin Fu & Xiaoqian Qian & Lina Wang, 2017. "Energy Efficiency for Airtightness and Exterior Wall Insulation of Passive Houses in Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 9(7), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1700-:d:228456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.