IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p909-d82019.html
   My bibliography  Save this article

Multi-Objective Distribution Network Expansion Incorporating Electric Vehicle Charging Stations

Author

Listed:
  • Yue Xiang

    (School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China)

  • Wei Yang

    (School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China)

  • Junyong Liu

    (School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China)

  • Furong Li

    (Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK)

Abstract

The paper develops a multi-objective planning framework for distribution network expansion with electric vehicle charging stations. Charging loads are modeled in the first place, and then integrated into the optimal distribution network expansion planning. The formulation is extended from the single objective of the economic cost minimization into three objectives with the additional maximization of the charging station utilization, and maximization of the reliability level. Compared with the existing models, it captures the interactive impacts between charging infrastructures planning and distribution network planning from the aspects of economy, utilization, and reliability. A multi-stage search strategy is designed to solve the multi-objective problem. The models and the strategy are demonstrated by the test case. The results show that the proposed planning framework can make a trade-off among the three objectives, and offer a perspective to effectively integrate the network constraints from both the transportation network and distribution network.

Suggested Citation

  • Yue Xiang & Wei Yang & Junyong Liu & Furong Li, 2016. "Multi-Objective Distribution Network Expansion Incorporating Electric Vehicle Charging Stations," Energies, MDPI, vol. 9(11), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:909-:d:82019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ying-Wei & Wang, Chuan-Ren, 2010. "Locating passenger vehicle refueling stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 791-801, September.
    2. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    3. Cavadas, Joana & Homem de Almeida Correia, Gonçalo & Gouveia, João, 2015. "A MIP model for locating slow-charging stations for electric vehicles in urban areas accounting for driver tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 188-201.
    4. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    5. He, Fang & Yin, Yafeng & Lawphongpanich, Siriphong, 2014. "Network equilibrium models with battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 306-319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo L. Aschidamini & Gederson A. da Cruz & Mariana Resener & Maicon J. S. Ramos & Luís A. Pereira & Bibiana P. Ferraz & Sérgio Haffner & Panos M. Pardalos, 2022. "Expansion Planning of Power Distribution Systems Considering Reliability: A Comprehensive Review," Energies, MDPI, vol. 15(6), pages 1-29, March.
    2. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    3. Yajun Zhang & Jie Deng & Kangkang Zhu & Yongqiang Tao & Xiaolin Liu & Ligang Cui, 2021. "Location and Expansion of Electric Bus Charging Stations Based on Gridded Affinity Propagation Clustering and a Sequential Expansion Rule," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    4. Cuiyu Kong & Raka Jovanovic & Islam Safak Bayram & Michael Devetsikiotis, 2017. "A Hierarchical Optimization Model for a Network of Electric Vehicle Charging Stations," Energies, MDPI, vol. 10(5), pages 1-20, May.
    5. Miguel Carrión & Rafael Zárate-Miñano & Ruth Domínguez, 2020. "Integration of Electric Vehicles in Low-Voltage Distribution Networks Considering Voltage Management," Energies, MDPI, vol. 13(16), pages 1-23, August.
    6. Zeng, Bo & Feng, Jiahuan & Zhang, Jianhua & Liu, Zongqi, 2017. "An optimal integrated planning method for supporting growing penetration of electric vehicles in distribution systems," Energy, Elsevier, vol. 126(C), pages 273-284.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    3. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    4. Ferro, G. & Minciardi, R. & Robba, M., 2020. "A user equilibrium model for electric vehicles: Joint traffic and energy demand assignment," Energy, Elsevier, vol. 198(C).
    5. Davidov, Sreten & Pantoš, Miloš, 2017. "Impact of stochastic driving range on the optimal charging infrastructure expansion planning," Energy, Elsevier, vol. 141(C), pages 603-612.
    6. Yi, Zonggen & Bauer, Peter H., 2016. "Optimization models for placement of an energy-aware electric vehicle charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 227-244.
    7. Schiffer, Maximilian & Walther, Grit, 2017. "The electric location routing problem with time windows and partial recharging," European Journal of Operational Research, Elsevier, vol. 260(3), pages 995-1013.
    8. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    9. Yang, Woosuk, 2018. "A user-choice model for locating congested fast charging stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 189-213.
    10. Di Xu & Wenhui Pei & Qi Zhang, 2022. "Optimal Planning of Electric Vehicle Charging Stations Considering User Satisfaction and Charging Convenience," Energies, MDPI, vol. 15(14), pages 1-16, July.
    11. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Anjos, Miguel F. & Gendron, Bernard & Joyce-Moniz, Martim, 2020. "Increasing electric vehicle adoption through the optimal deployment of fast-charging stations for local and long-distance travel," European Journal of Operational Research, Elsevier, vol. 285(1), pages 263-278.
    13. Hosseini, Meysam & MirHassani, S.A., 2015. "Refueling-station location problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 101-116.
    14. Zhou, Jianli & Wu, Yunna & Tao, Yao & Gao, Jianwei & Zhong, Zhiming & Xu, Chuanbo, 2021. "Geographic information big data-driven two-stage optimization model for location decision of hydrogen refueling stations: An empirical study in China," Energy, Elsevier, vol. 225(C).
    15. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    16. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    17. Geng, Lijun & Lu, Zhigang & He, Liangce & Zhang, Jiangfeng & Li, Xueping & Guo, Xiaoqiang, 2019. "Smart charging management system for electric vehicles in coupled transportation and power distribution systems," Energy, Elsevier, vol. 189(C).
    18. Micari, Salvatore & Polimeni, Antonio & Napoli, Giuseppe & Andaloro, Laura & Antonucci, Vincenzo, 2017. "Electric vehicle charging infrastructure planning in a road network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 98-108.
    19. Faping Wang & Rui Chen & Lixin Miao & Peng Yang & Bin Ye, 2019. "Location Optimization of Electric Vehicle Mobile Charging Stations Considering Multi-Period Stochastic User Equilibrium," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    20. Randall Wigle, 2019. "The Economic Case for EV Supports? Or: Network Effects, EV Pessimism and EV Supports," LCERPA Working Papers ec0123, Laurier Centre for Economic Research and Policy Analysis, revised 23 Oct 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:909-:d:82019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.