IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i6p2773-2783d26129.html
   My bibliography  Save this article

Isolation and Fatty Acid Profile of Selected Microalgae Strains from the Red Sea for Biofuel Production

Author

Listed:
  • Hugo Pereira

    (Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal)

  • Luísa Barreira

    (Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal)

  • Luísa Custódio

    (Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal)

  • Salman Alrokayan

    (College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Fouzi Mouffouk

    (National Guard Health Affairs (NGHA), King Abdullah International Medical Research Centre (KAIMRC), Jeddah 21423, Saudi Arabia
    Chemistry Department, Faculty of Science, Kuwait University, Safat 13060, Kuwait)

  • João Varela

    (Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal)

  • Khalid M. Abu-Salah

    (King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia)

  • Radhouan Ben-Hamadou

    (Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal
    Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar)

Abstract

The isolation of lipid-rich autochthonous strains of microalgae is a crucial stage for the development of a microalgae-based biofuel production plant, as these microalgae already have the necessary adaptations to withstand competition, predation and the temperatures observed at each production site. This is particularly important in extreme climates such as in Saudi Arabia. Resorting to fluorescence activated cell sorting (FACS) we screened for and isolated several microalgal strains from samples collected from the Red Sea. Relying on the fluorescence of BODIPY 505/515 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diazasindacene) and growth performance, four promising candidates were identified and the total lipid content and fatty acid profile was assessed for biofuels production. Selected isolates were classified as chlorophytes, belonging to three different genera: Picochlorum , Nannochloris and Desmochloris . The lipid contents were assessed microscopically by means of BODIPY 505/515-associated fluorescence to detect intracellular lipid bodies, which revealed several lipid drops in all selected strains. This result was confirmed by lipid gravimetric determination, which demonstrated that all strains under study presented inner cell lipid contents ranging from 20% to 25% of the biomass dry weight. Furthermore, the fatty acid methyl esters profile of all strains seems ideal for biodiesel production due to a low degree of polyunsaturated fatty acid methyl esters and high amount of palmitic and oleic acids.

Suggested Citation

  • Hugo Pereira & Luísa Barreira & Luísa Custódio & Salman Alrokayan & Fouzi Mouffouk & João Varela & Khalid M. Abu-Salah & Radhouan Ben-Hamadou, 2013. "Isolation and Fatty Acid Profile of Selected Microalgae Strains from the Red Sea for Biofuel Production," Energies, MDPI, vol. 6(6), pages 1-11, May.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:6:p:2773-2783:d:26129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/6/2773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/6/2773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    2. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajabi Islami, Houman & Assareh, Reza, 2020. "Enhancement effects of ferric ion concentrations on growth and lipid characteristics of freshwater microalga Chlorococcum oleofaciens KF584224.1 for biodiesel production," Renewable Energy, Elsevier, vol. 149(C), pages 264-272.
    2. Touria Bounnit & Imen Saadaoui & Rihab Rasheed & Kira Schipper & Maryam Al Muraikhi & Hareb Al Jabri, 2020. "Sustainable Production of Nannochloris atomus Biomass Towards Biodiesel Production," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    3. J. Jed Brown & Probir Das & Mohammad Al-Saidi, 2018. "Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation," Sustainability, MDPI, vol. 10(5), pages 1-16, April.
    4. Ramganesh Selvarajan & Tamás Felföldi & Tamás Tauber & Elumalai Sanniyasi & Timothy Sibanda & Memory Tekere, 2015. "Screening and Evaluation of Some Green Algal Strains (Chlorophyceae) Isolated from Freshwater and Soda Lakes for Biofuel Production," Energies, MDPI, vol. 8(7), pages 1-20, July.
    5. Dasgupta, Chitralekha Nag & Suseela, M.R. & Mandotra, S.K. & Kumar, Pankaj & Pandey, Manish K. & Toppo, Kiran & Lone, J.A., 2015. "Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production," Applied Energy, Elsevier, vol. 146(C), pages 202-208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    2. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    3. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    4. Terigar, Beatrice G. & Theegala, Chandra S., 2014. "Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures," Renewable Energy, Elsevier, vol. 64(C), pages 238-243.
    5. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    6. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    7. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    8. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    9. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    10. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    11. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    12. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Thi Dong Phuong Nguyen & Duc Huy Nguyen & Jun Wei Lim & Chih-Kai Chang & Hui Yi Leong & Thi Ngoc Thu Tran & Thi Bich Hau Vu & Thi Trung Chinh Nguyen & Pau Loke Show, 2019. "Investigation of the Relationship between Bacteria Growth and Lipid Production Cultivating of Microalgae Chlorella Vulgaris in Seafood Wastewater," Energies, MDPI, vol. 12(12), pages 1-12, June.
    14. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    15. Rocío Maceiras & Víctor Alfonsín & Luis Seguí & Juan F. González, 2021. "Microwave Assisted Alkaline Pretreatment of Algae Waste in the Production of Cellulosic Bioethanol," Energies, MDPI, vol. 14(18), pages 1-10, September.
    16. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    17. Yuan, Shuo & Hu, Jinrun & Liu, Zhiyuan & Hong, Yuanzhuo & Wang, Xianyong, 2020. "Modeling microalgae growth in continuous culture: Parameters analysis and temperature dependence," Energy, Elsevier, vol. 195(C).
    18. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Hívila M. P. Marreiro & Rogério S. Peruchi & Riuzuani M. B. P. Lopes & Silvia L. F. Andersen & Sayonara A. Eliziário & Paulo Rotella Junior, 2021. "Empirical Studies on Biomass Briquette Production: A Literature Review," Energies, MDPI, vol. 14(24), pages 1-40, December.
    20. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:6:p:2773-2783:d:26129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.