IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i6p948-959d12752.html
   My bibliography  Save this article

Energy Saving Evaluation of the Ventilated BIPV Walls

Author

Listed:
  • Chi-Ming Lai

    (Research Center for Energy Technology and Strategy, National Cheng Kung University, Taiwan/1, University Road, Tainan City 701, Taiwan
    Department of Civil Engineering, National Cheng Kung University, Taiwan/1, University Road, Tainan City 701, Taiwan)

  • Yi-Pin Lin

    (Department of Interior Design, Tung Fang Design University, Taiwan/110, Dong fang Road, Hunei District, Kaohsiung City 82941, Taiwan)

Abstract

This study integrates photovoltaic (PV) system, building structure, and heat flow mechanism to propose the notion of ventilated Building-Integrated Photovoltaic (BIPV) walls. The energy-saving potential of the ventilated BIPV walls was investigated via engineering considerations and computational fluid dynamics (CFD) simulations. The results show that the heat removal rate and indoor heat gain of the proposed ventilated BIPV walls were dominantly affected by outdoor wind velocity and airflow channel width. Correlations for predicting the heat removal rate and indoor heat gain, the reduction ratio of the indoor heat gain, CO 2 reduction, and induced indoor air exchange are introduced.

Suggested Citation

  • Chi-Ming Lai & Yi-Pin Lin, 2011. "Energy Saving Evaluation of the Ventilated BIPV Walls," Energies, MDPI, vol. 4(6), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:6:p:948-959:d:12752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/6/948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/6/948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aboulnaga, Mohsen M., 1998. "A roof solar chimney assisted by cooling cavity for natural ventilation in buildings in hot arid climates: An energy conservation approach in Al-Ain city," Renewable Energy, Elsevier, vol. 14(1), pages 357-363.
    2. Ong, K.S., 2003. "A mathematical model of a solar chimney," Renewable Energy, Elsevier, vol. 28(7), pages 1047-1060.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sa, Aida & Thollander, Patrik & Cagno, Enrico, 2017. "Assessing the driving factors for energy management program adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 538-547.
    2. Suzana Domjan & Lenart Petek & Ciril Arkar & Sašo Medved, 2020. "Experimental Study on Energy Efficiency of Multi-Functional BIPV Glazed Façade Structure during Heating Season," Energies, MDPI, vol. 13(11), pages 1-19, June.
    3. Brown, Marilyn A. & Gumerman, Etan & Sun, Xiaojing & Sercy, Kenneth & Kim, Gyungwon, 2012. "Myths and facts about electricity in the U.S. South," Energy Policy, Elsevier, vol. 40(C), pages 231-241.
    4. Thorsten Schuetze, 2013. "Integration of Photovoltaics in Buildings—Support Policies Addressing Technical and Formal Aspects," Energies, MDPI, vol. 6(6), pages 1-20, June.
    5. Samuel Domínguez & Juan J. Sendra & Angel L. León & Paula M. Esquivias, 2012. "Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies," Energies, MDPI, vol. 5(7), pages 1-25, July.
    6. Chasnyk, O. & Sołowski, G. & Shkarupa, O., 2015. "Historical, technical and economic aspects of biogas development: Case of Poland and Ukraine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 227-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2006. "The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate," Renewable Energy, Elsevier, vol. 31(7), pages 987-1010.
    2. Maerefat, M. & Haghighi, A.P., 2010. "Natural cooling of stand-alone houses using solar chimney and evaporative cooling cavity," Renewable Energy, Elsevier, vol. 35(9), pages 2040-2052.
    3. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    4. Lindita Bande & Rahma Adan & Kim Young & Raghad Ghazal & Mukesh Jha & Amna Aldarmaki & Atmah Aldhaheri & Asma Alneyadi & Sharina Aldhaheri & Mira Khalifa, 2021. "Outdoor Thermal Comfort Study on a District Level as Part of the Housing Programs in Abu Dhabi and Al Ain, United Arab Emirates," Land, MDPI, vol. 10(3), pages 1-23, March.
    5. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    6. DeBlois, Justin C. & Bilec, Melissa M. & Schaefer, Laura A., 2013. "Design and zonal building energy modeling of a roof integrated solar chimney," Renewable Energy, Elsevier, vol. 52(C), pages 241-250.
    7. Xamán, J. & Vargas-López, R. & Gijón-Rivera, M. & Zavala-Guillén, I. & Jiménez, M.J. & Arce, J., 2019. "Transient thermal analysis of a solar chimney for buildings with three different types of absorbing materials: Copper plate/PCM/concrete wall," Renewable Energy, Elsevier, vol. 136(C), pages 139-158.
    8. Maerefat, M. & Haghighi, A.P., 2010. "Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 35(10), pages 2316-2324.
    9. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Opaque solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2820-2832.
    10. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    11. Giulio Mangherini & Paolo Bernardoni & Eleonora Baccega & Alfredo Andreoli & Valentina Diolaiti & Donato Vincenzi, 2023. "Design of a Ventilated Façade Integrating a Luminescent Solar Concentrator Photovoltaic Panel," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    12. Hiba Najini & Mutasim Nour & Sulaiman Al-Zuhair & Fadi Ghaith, 2020. "Techno-Economic Analysis of Green Building Codes in United Arab Emirates Based on a Case Study Office Building," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    13. Cheng, Xudong & Shi, Zhicheng & Nguyen, Kate & Zhang, Lihai & Zhou, Yong & Zhang, Guomin & Wang, Jinhui & Shi, Long, 2020. "Solar chimney in tunnel considering energy-saving and fire safety," Energy, Elsevier, vol. 210(C).
    14. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    15. Ruixin Li & Yiwan Zhao & Gaochong Lv & Weilin Li & Jiayin Zhu & Olga L. Bantserova, 2021. "Thermal Performance Analysis of Heat Collection Wall in High-Rise Building Based on the Measurement of Near-Wall Microclimate," Energies, MDPI, vol. 14(7), pages 1-24, April.
    16. Chen, Wei & Qu, Man, 2014. "Analysis of the heat transfer and airflow in solar chimney drying system with porous absorber," Renewable Energy, Elsevier, vol. 63(C), pages 511-518.
    17. Al-Alili, A. & Islam, M.D. & Kubo, I. & Hwang, Y. & Radermacher, R., 2012. "Modeling of a solar powered absorption cycle for Abu Dhabi," Applied Energy, Elsevier, vol. 93(C), pages 160-167.
    18. Afriyie, J.K. & Nazha, M.A.A. & Rajakaruna, H. & Forson, F.K., 2009. "Experimental investigations of a chimney-dependent solar crop dryer," Renewable Energy, Elsevier, vol. 34(1), pages 217-222.
    19. Tariq, Rasikh & Torres-Aguilar, C.E. & Sheikh, Nadeem Ahmed & Ahmad, Tanveer & Xamán, J. & Bassam, A., 2022. "Data engineering for digital twining and optimization of naturally ventilated solar façade with phase changing material under global projection scenarios," Renewable Energy, Elsevier, vol. 187(C), pages 1184-1203.
    20. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.

    More about this item

    Keywords

    energy; BIPV; building; CFD;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:6:p:948-959:d:12752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.