IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i12p1880-1894d10469.html
   My bibliography  Save this article

Risk Reserve Constrained Economic Dispatch Model with Wind Power Penetration

Author

Listed:
  • Wei Zhou

    (Department of Electrical and Electronics Engineering, Dalian University of Technology, Dalian, 116024, China)

  • Hui Sun

    (Department of Electrical and Electronics Engineering, Dalian University of Technology, Dalian, 116024, China)

  • Yu Peng

    (Department of Electrical and Electronics Engineering, Dalian University of Technology, Dalian, 116024, China)

Abstract

This paper develops a modified economic dispatch (ED) optimization model with wind power penetration. Due to the uncertain nature of wind speed, both overestimation and underestimation of the available wind power are compensated using the up and down spinning reserves. In order to determine both of these two reserve demands, the risk-based up and down spinning reserve constraints are presented considering not only the uncertainty of available wind power, but also the load forecast error and generator outage rates. The predictor-corrector primal-dual interior point (IP) method is utilized to solve the proposed ED model. Simulation results of a system with ten conventional generators and one wind farm demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Wei Zhou & Hui Sun & Yu Peng, 2010. "Risk Reserve Constrained Economic Dispatch Model with Wind Power Penetration," Energies, MDPI, vol. 3(12), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:12:p:1880-1894:d:10469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/12/1880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/12/1880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, M. & Chen, Z. & Blaabjerg, F., 2006. "Probabilistic capacity of a grid connected wind farm based on optimization method," Renewable Energy, Elsevier, vol. 31(13), pages 2171-2187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Min & Ji, Xiang & Hu, Xintong & Cheng, Peijun & Du, Yuxin & Liu, Mingbo, 2018. "Autonomous optimized economic dispatch of active distribution system with multi-microgrids," Energy, Elsevier, vol. 153(C), pages 479-489.
    2. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    3. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    4. Kyung-bin Kwon & Hyeongon Park & Jae-Kun Lyu & Jong-Keun Park, 2016. "Cost Analysis Method for Estimating Dynamic Reserve Considering Uncertainties in Supply and Demand," Energies, MDPI, vol. 9(10), pages 1-16, October.
    5. Wushan Cheng & Haifeng Zhang, 2014. "A Dynamic Economic Dispatch Model Incorporating Wind Power Based on Chance Constrained Programming," Energies, MDPI, vol. 8(1), pages 1-24, December.
    6. Li, Cun-bin & Li, Peng & Feng, Xia, 2014. "Analysis of wind power generation operation management risk in China," Renewable Energy, Elsevier, vol. 64(C), pages 266-275.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fallahi, Farhad & Nick, Mostafa & Riahy, Gholam H. & Hosseinian, Seyed Hossein & Doroudi, Aref, 2014. "The value of energy storage in optimal non-firm wind capacity connection to power systems," Renewable Energy, Elsevier, vol. 64(C), pages 34-42.
    2. Li, Rui & Wang, Wei & Wu, Xuezhi & Tang, Fen & Chen, Zhe, 2019. "Cooperative planning model of renewable energy sources and energy storage units in active distribution systems: A bi-level model and Pareto analysis," Energy, Elsevier, vol. 168(C), pages 30-42.
    3. Aliari, Yashar & Haghani, Ali, 2016. "Planning for integration of wind power capacity in power generation using stochastic optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 907-919.
    4. Jiao, P.H. & Chen, J.J. & Peng, K. & Zhao, Y.L. & Xin, K.F., 2020. "Multi-objective mean-semi-entropy model for optimal standalone micro-grid planning with uncertain renewable energy resources," Energy, Elsevier, vol. 191(C).
    5. Ghasemi, Ahmad & Enayatzare, Mehdi, 2018. "Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response," Renewable Energy, Elsevier, vol. 123(C), pages 460-474.
    6. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    7. Ghasemi, Ahmad & Mortazavi, Seyed Saeidollah & Mashhour, Elaheh, 2016. "Hourly demand response and battery energy storage for imbalance reduction of smart distribution company embedded with electric vehicles and wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 124-136.
    8. Moghaddam, Iman Gerami & Nick, Mostafa & Fallahi, Farhad & Sanei, Mohsen & Mortazavi, Saeid, 2013. "Risk-averse profit-based optimal operation strategy of a combined wind farm–cascade hydro system in an electricity market," Renewable Energy, Elsevier, vol. 55(C), pages 252-259.
    9. Chen, J.J. & Wu, Q.H. & Zhang, L.L. & Wu, P.Z., 2017. "Multi-objective mean–variance–skewness model for nonconvex and stochastic optimal power flow considering wind power and load uncertainties," European Journal of Operational Research, Elsevier, vol. 263(2), pages 719-732.
    10. Canizes, Bruno & Soares, João & Lezama, Fernando & Silva, Cátia & Vale, Zita & Corchado, Juan M., 2019. "Optimal expansion planning considering storage investment and seasonal effect of demand and renewable generation," Renewable Energy, Elsevier, vol. 138(C), pages 937-954.
    11. Li, Y.Z. & Wu, Q.H. & Li, M.S. & Zhan, J.P., 2014. "Mean-variance model for power system economic dispatch with wind power integrated," Energy, Elsevier, vol. 72(C), pages 510-520.
    12. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Multi-objective optimization and decision making for power dispatch of a large-scale integrated energy system with distributed DHCs embedded," Applied Energy, Elsevier, vol. 154(C), pages 369-379.
    13. José F. Herbert-Acero & Oliver Probst & Pierre-Elouan Réthoré & Gunner Chr. Larsen & Krystel K. Castillo-Villar, 2014. "A Review of Methodological Approaches for the Design and Optimization of Wind Farms," Energies, MDPI, vol. 7(11), pages 1-87, October.
    14. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    15. Li, Y.Z. & Li, K.C. & Wang, P. & Liu, Y. & Lin, X.N. & Gooi, H.B. & Li, G.F. & Cai, D.L. & Luo, Y., 2017. "Risk constrained economic dispatch with integration of wind power by multi-objective optimization approach," Energy, Elsevier, vol. 126(C), pages 810-820.
    16. Chen, J.J. & Zhuang, Y.B. & Li, Y.Z. & Wang, P. & Zhao, Y.L. & Zhang, C.S., 2017. "Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model," Applied Energy, Elsevier, vol. 189(C), pages 534-554.
    17. Ebrahimi, F.M. & Khayatiyan, A. & Farjah, E., 2016. "A novel optimizing power control strategy for centralized wind farm control system," Renewable Energy, Elsevier, vol. 86(C), pages 399-408.
    18. Sunoh Kim & Jin Hur, 2020. "A Probabilistic Modeling Based on Monte Carlo Simulation of Wind Powered EV Charging Stations for Steady-States Security Analysis," Energies, MDPI, vol. 13(20), pages 1-13, October.
    19. Zeng, Qing & Fang, Jiakun & Li, Jinghua & Chen, Zhe, 2016. "Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion," Applied Energy, Elsevier, vol. 184(C), pages 1483-1492.
    20. Fitiwi, Desta Z. & de Cuadra, F. & Olmos, L. & Rivier, M., 2015. "A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty," Energy, Elsevier, vol. 90(P2), pages 1360-1376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:12:p:1880-1894:d:10469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.