IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2289-d1646238.html
   My bibliography  Save this article

Wide Area Measurement-Based Centralized Power Management System for Microgrid with Load Prioritization

Author

Listed:
  • Prashant Khare

    (Department of Electrical and Electronics Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India)

  • Maddikara Jaya Bharata Reddy

    (Department of Electrical and Electronics Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India)

Abstract

The increasing power consumption reflects technological and industrial growth, but meeting this demand with conventional fossil-fuel-based plants is challenging. Microgrids address this issue by integrating renewable energy-based Distributed Energy Resources (DERs) and Energy Storage Systems (ESS). Efficient Microgrid operation requires a power management system to balance supply and demand, reduce costs, and ensure load prioritization. This paper presents a wide area measurement (WAMS)-based Centralized Power Management System (CPMS) for AC microgrids in both Islanded and Grid-Connected modes. The modified IEEE 13-bus system is utilized as a microgrid test system by integrating DERs and ESS. WAMS significantly enhances intra-microgrid communication by offering real-time, high-resolution monitoring of electrical parameters, surpassing the limitations of traditional SCADA-based monitoring systems. In grid-connected mode, the proposed CPMS effectively manages dynamic grid tariffs, generation variability in DERs, and state-of-charge (SoC) variations in the ESS while ensuring uninterrupted load supply. In islanded mode, a load prioritization scheme is employed to dynamically disconnect and restore loads to enhance the extent of load coverage across consumer categories. The inclusion of diverse load categories, such as domestic, industrial, commercial, etc., enhances the practical applicability of the CPMS in real-world power systems. The effectiveness of the proposed CPMS is validated through multiple case studies conducted in Simulink/MATLAB.

Suggested Citation

  • Prashant Khare & Maddikara Jaya Bharata Reddy, 2025. "Wide Area Measurement-Based Centralized Power Management System for Microgrid with Load Prioritization," Energies, MDPI, vol. 18(9), pages 1-35, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2289-:d:1646238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adefarati, T. & Bansal, R.C., 2017. "Reliability assessment of distribution system with the integration of renewable distributed generation," Applied Energy, Elsevier, vol. 185(P1), pages 158-171.
    2. Takumi Kato & Hideyuki Takahashi & Kazuto Sasai & Gen Kitagata & Hak-Man Kim & Tetsuo Kinoshita, 2014. "Priority-Based Hierarchical Operational Management for Multiagent-Based Microgrids," Energies, MDPI, vol. 7(4), pages 1-28, March.
    3. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita V. Martyushev & Boris V. Malozyomov & Olga A. Filina & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Stochastic Models and Processing Probabilistic Data for Solving the Problem of Improving the Electric Freight Transport Reliability," Mathematics, MDPI, vol. 11(23), pages 1-19, November.
    2. Vadim Manusov & Svetlana Beryozkina & Muso Nazarov & Murodbek Safaraliev & Inga Zicmane & Pavel Matrenin & Anvari Ghulomzoda, 2022. "Optimal Management of Energy Consumption in an Autonomous Power System Considering Alternative Energy Sources," Mathematics, MDPI, vol. 10(3), pages 1-17, February.
    3. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    4. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    5. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    6. Ganesh Sampatrao Patil & Anwar Mulla & Taha Selim Ustun, 2022. "Impact of Wind Farm Integration on LMP in Deregulated Energy Markets," Sustainability, MDPI, vol. 14(7), pages 1-20, April.
    7. Ali, Aamir & Bughio, Ateeq-u-Rehman & Abbas, Ghulam & Keerio, M.U. & Mugheri, N.H. & Memon, Shaina & Saand, A.S., 2024. "Optimization of distributed energy resources planning and battery energy storage management via large-scale multi-objective evolutionary algorithm," Energy, Elsevier, vol. 311(C).
    8. Saheed Lekan Gbadamosi & Nnamdi I. Nwulu, 2020. "Optimal Power Dispatch and Reliability Analysis of Hybrid CHP-PV-Wind Systems in Farming Applications," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    9. Dimitrios Cholidis & Nikolaos Sifakis & Alexandros Chachalis & Nikolaos Savvakis & George Arampatzis, 2025. "Energy Transition Framework for Nearly Zero-Energy Ports: HRES Planning, Storage Integration, and Implementation Roadmap," Sustainability, MDPI, vol. 17(13), pages 1-46, June.
    10. Tianlei Zang & Xiaoning Tong & Chuangzhi Li & Yahui Gong & Rui Su & Buxiang Zhou, 2025. "Research and Prospect of Defense for Integrated Energy Cyber–Physical Systems Against Deliberate Attacks," Energies, MDPI, vol. 18(6), pages 1-57, March.
    11. Dong Zhang & GM Shafiullah & Choton Kanti Das & Kok Wai Wong, 2023. "Optimal Allocation of Battery Energy Storage Systems to Enhance System Performance and Reliability in Unbalanced Distribution Networks," Energies, MDPI, vol. 16(20), pages 1-35, October.
    12. Zhang, Xinjing & Chen, Haisheng & Xu, Yujie & Li, Wen & He, Fengjuan & Guo, Huan & Huang, Ye, 2017. "Distributed generation with energy storage systems: A case study," Applied Energy, Elsevier, vol. 204(C), pages 1251-1263.
    13. Magdalena Bartecka & Piotr Marchel & Krzysztof Zagrajek & Mirosław Lewandowski & Mariusz Kłos, 2024. "Reliability Model of Battery Energy Storage Cooperating with Prosumer PV Installations," Energies, MDPI, vol. 17(23), pages 1-23, November.
    14. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    15. Senatla Jaane, Mamahloko & Bansal, Ramesh C. & Naidoo, Raj M. & Mbungu, Nsilulu T. & Mudau, Unarine Bridget & Yusuf, Teslim & Kgaswane, Keorapetse & Moodley, Prathaban, 2024. "Two decades of progressive cost reduction: A paradigm shift for distributed solar photovoltaics and energy efficiency," Energy, Elsevier, vol. 312(C).
    16. Karngala, Arun Kumar & Singh, Chanan, 2023. "Impact of system parameters and geospatial variables on the reliability of residential systems with PV and energy storage," Applied Energy, Elsevier, vol. 344(C).
    17. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    18. Fuentes-Cortés, Luis Fabián & Flores-Tlacuahuac, Antonio, 2018. "Integration of distributed generation technologies on sustainable buildings," Applied Energy, Elsevier, vol. 224(C), pages 582-601.
    19. Mendoza-Vizcaino, Javier & Raza, Muhammad & Sumper, Andreas & Díaz-González, Francisco & Galceran-Arellano, Samuel, 2019. "Integral approach to energy planning and electric grid assessment in a renewable energy technology integration for a 50/50 target applied to a small island," Applied Energy, Elsevier, vol. 233, pages 524-543.
    20. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2289-:d:1646238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.