IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2144-d1639508.html
   My bibliography  Save this article

Research Progress on State of Charge Estimation Methods for Power Batteries in New Energy Intelligent Connected Vehicles

Author

Listed:
  • Hongzhao Li

    (School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China)

  • Hongsheng Jia

    (School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China)

  • Ping Xiao

    (School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China)

  • Haojie Jiang

    (School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China)

  • Yang Chen

    (National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

Accurately estimating the State of Charge (SOC) of power batteries is crucial for the Battery Management Systems (BMS) in new energy intelligent connected vehicles. It directly influences vehicle range, energy management efficiency, and the safety and lifespan of the battery. However, SOC cannot be measured directly with instruments; it needs to be estimated using external parameters such as current, voltage, and internal resistance. Moreover, power batteries represent complex nonlinear time-varying systems, and various uncertainties—like battery aging, fluctuations in ambient temperature, and self-discharge effects—complicate the accuracy of these estimations. This significantly increases the complexity of the estimation process and limits industrial applications. To address these challenges, this study systematically classifies existing SOC estimation algorithms, performs comparative analyses of their computational complexity and accuracy, and identifies the inherent limitations within each category. Additionally, a comprehensive review of SOC estimation technologies utilized in BMS by automotive OEMs globally is conducted. The analysis concludes that advancing multi-fusion estimation frameworks, which offer enhanced universality, robustness, and hard real-time capabilities, represents the primary research trajectory in this field.

Suggested Citation

  • Hongzhao Li & Hongsheng Jia & Ping Xiao & Haojie Jiang & Yang Chen, 2025. "Research Progress on State of Charge Estimation Methods for Power Batteries in New Energy Intelligent Connected Vehicles," Energies, MDPI, vol. 18(9), pages 1-30, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2144-:d:1639508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiong, Rui & Li, Zhengyang & Li, Hailong & Wang, Jun & Liu, Guofang, 2025. "A novel method for state of charge estimation of lithium-ion batteries at low-temperatures," Applied Energy, Elsevier, vol. 377(PB).
    2. Ramesh Kumar Chidambaram & Dipankar Chatterjee & Barnali Barman & Partha Pratim Das & Dawid Taler & Jan Taler & Tomasz Sobota, 2023. "Effect of Regenerative Braking on Battery Life," Energies, MDPI, vol. 16(14), pages 1-24, July.
    3. Wang, Luxiao & Duan, Jiandong & Fan, Shaogui & Zhao, Ke, 2024. "An estimated value compensation method for state of charge estimation of lithium battery based on open circuit voltage change rate," Energy, Elsevier, vol. 313(C).
    4. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Yun Bao & Wenbin Dong & Dian Wang, 2018. "Online Internal Resistance Measurement Application in Lithium Ion Battery Capacity and State of Charge Estimation," Energies, MDPI, vol. 11(5), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Bo & Qian, Yucun & Li, Qiang & Chen, Qian & Wu, Jiyang & Luo, Enbo & Xie, Rui & Zheng, Ruyi & Yan, Yunfeng & Su, Shi & Wang, Jingbo, 2024. "Critical summary and perspectives on state-of-health of lithium-ion battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    3. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    4. Liu, Yongjie & Huang, Zhiwu & Wu, Yue & Yan, Lisen & Jiang, Fu & Peng, Jun, 2022. "An online hybrid estimation method for core temperature of Lithium-ion battery with model noise compensation," Applied Energy, Elsevier, vol. 327(C).
    5. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    6. Li, Yihuan & Li, Kang & Liu, Xuan & Li, Xiang & Zhang, Li & Rente, Bruno & Sun, Tong & Grattan, Kenneth T.V., 2022. "A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements," Applied Energy, Elsevier, vol. 325(C).
    7. Yonghong Xu & Cheng Li & Xu Wang & Hongguang Zhang & Fubin Yang & Lili Ma & Yan Wang, 2022. "Joint Estimation Method with Multi-Innovation Unscented Kalman Filter Based on Fractional-Order Model for State of Charge and State of Health Estimation," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    8. Zhang, Shuzhi & Zhang, Chen & Jiang, Shiyong & Zhang, Xiongwen, 2022. "A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation," Energy, Elsevier, vol. 246(C).
    9. Wan, Sicheng & Yang, Haojing & Lin, Jinwen & Li, Junhui & Wang, Yibo & Chen, Xinman, 2024. "Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM," Energy, Elsevier, vol. 310(C).
    10. Siyi Huang & Jianqiang Kang & Bowen Zhao & Oukai Wu & Jing V. Wang, 2023. "A SOC Correction Method Based on Unsynchronized Full Charge and Discharge Control Strategy in Multi-Branch Battery System," Energies, MDPI, vol. 16(17), pages 1-15, August.
    11. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    13. Ouyang, Tiancheng & Xu, Peihang & Chen, Jingxian & Su, Zixiang & Huang, Guicong & Chen, Nan, 2021. "A novel state of charge estimation method for lithium-ion batteries based on bias compensation," Energy, Elsevier, vol. 226(C).
    14. An, Fulai & Zhang, Weige & Sun, Bingxiang & Jiang, Jiuchun & Fan, Xinyuan, 2023. "A novel battery pack inconsistency model and influence degree analysis of inconsistency on output energy," Energy, Elsevier, vol. 271(C).
    15. Hatherall, Ollie & Barai, Anup & Niri, Mona Faraji & Wang, Zeyuan & Marco, James, 2024. "Novel battery power capability assessment for improved eVTOL aircraft landing," Applied Energy, Elsevier, vol. 361(C).
    16. Maheshwari, A. & Nageswari, S., 2022. "Real-time state of charge estimation for electric vehicle power batteries using optimized filter," Energy, Elsevier, vol. 254(PB).
    17. Xuning Feng & Caihao Weng & Xiangming He & Li Wang & Dongsheng Ren & Languang Lu & Xuebing Han & Minggao Ouyang, 2018. "Incremental Capacity Analysis on Commercial Lithium-Ion Batteries using Support Vector Regression: A Parametric Study," Energies, MDPI, vol. 11(9), pages 1-21, September.
    18. Jianyu Zhang & Kang Li, 2024. "State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles—A Review," Energies, MDPI, vol. 17(22), pages 1-16, November.
    19. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    20. Chen, Junxiong & Feng, Xiong & Jiang, Lin & Zhu, Qiao, 2021. "State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2144-:d:1639508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.