IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2105-d1637877.html
   My bibliography  Save this article

Deep Mining on the Formation Cycle Features for Concurrent SOH Estimation and RUL Prognostication in Lithium-Ion Batteries

Author

Listed:
  • Dongchen Yang

    (Faculty of Engineering, Architecture and Information Technology (EAIT), University of Queensland, Brisbane, QLD 4072, Australia)

  • Weilin He

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Xin He

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

Abstract

Lithium-ion batteries (LIBs) are widely utilized in consumer electronics, electric vehicles, and large-scale energy storage systems due to their high energy density and long lifespan. Accurately estimating the state of health (SOH) and predicting the remaining useful life (RUL) of cells is crucial to ensuring their safety and preventing potential risks. Existing state estimation methodologies primarily rely on electrical signal measurements, which predominantly capture electrochemical reaction dynamics but lack sufficient integration of thermomechanical process data critical to holistic system characterization. In this study, relevant thermal and mechanical features collected during the formation process are extracted and incorporated as additional data sources for battery state estimation. By integrating diverse datasets with advanced algorithms and models, we perform correlation analyses of parameters such as capacity, voltage, temperature, pressure, and strain, enabling precise SOH estimation and RUL prediction. Reliable predictions are achieved by considering the interaction mechanisms involved in the formation process from a mechanistic perspective. Full lifecycle data of batteries, gathered under varying pressures during formation, are used to predict RUL using convolutional neural networks (CNN) and Gaussian process regression (GPR). Models that integrate all formation-related data yielded the lowest root mean square error (RMSE) of 2.928% for capacity estimation and 16 cycles for RUL prediction, highlighting the significant role of surface-level physical features in improving accuracy. This research underscores the importance of formation features in battery state estimation and demonstrates the effectiveness of deep learning in performing thorough analyses, thereby guiding the optimization of battery management systems.

Suggested Citation

  • Dongchen Yang & Weilin He & Xin He, 2025. "Deep Mining on the Formation Cycle Features for Concurrent SOH Estimation and RUL Prognostication in Lithium-Ion Batteries," Energies, MDPI, vol. 18(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2105-:d:1637877
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    2. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Sibo Zeng & Sheng Chen & Babakalli Alkali, 2024. "Lithium-Ion Battery Capacity Estimation Based on Incremental Capacity Analysis and Deep Convolutional Neural Network," Energies, MDPI, vol. 17(6), pages 1-14, March.
    4. Rui Zhang & Chunyang Wang & Peichao Zou & Ruoqian Lin & Lu Ma & Tianyi Li & In-hui Hwang & Wenqian Xu & Chengjun Sun & Steve Trask & Huolin L. Xin, 2023. "Long-life lithium-ion batteries realized by low-Ni, Co-free cathode chemistry," Nature Energy, Nature, vol. 8(7), pages 695-702, July.
    5. Zhongxian Sun & Weilin He & Junlei Wang & Xin He, 2024. "State of Health Estimation for Lithium-Ion Batteries with Deep Learning Approach and Direct Current Internal Resistance," Energies, MDPI, vol. 17(11), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan, 2024. "Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence," Applied Energy, Elsevier, vol. 371(C).
    2. Michael Bosello & Carlo Falcomer & Claudio Rossi & Giovanni Pau, 2023. "To Charge or to Sell? EV Pack Useful Life Estimation via LSTMs, CNNs, and Autoencoders," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    4. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    5. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    7. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    8. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    9. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    10. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    12. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    13. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    14. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    15. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    17. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
    18. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. Aoye Song & Zhaohui Dan & Siqian Zheng & Yuekuan Zhou, 2024. "An electricity-driven mobility circular economy with lifecycle carbon footprints for climate-adaptive carbon neutrality transformation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Fatmawati Fatmawati & Nuryanti Mustari & Haerana Haerana & Risma Niswaty & Abdillah Abdillah, 2022. "Waste Bank Policy Implementation through Collaborative Approach: Comparative Study—Makassar and Bantaeng, Indonesia," Sustainability, MDPI, vol. 14(13), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2105-:d:1637877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.