IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2102-d1637726.html
   My bibliography  Save this article

Development of a Hybrid Modeling Framework for the Optimal Operation of Microgrids

Author

Listed:
  • Jaekyu Lee

    (Energy IT Convergence Research Center, Korea Electronics Technology Institute, 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Gyeonggi-do, Republic of Korea
    These authors contributed equally to this work.)

  • Eunseop Park

    (Energy IT Convergence Research Center, Korea Electronics Technology Institute, 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Gyeonggi-do, Republic of Korea
    These authors contributed equally to this work.)

  • Sangyub Lee

    (Energy IT Convergence Research Center, Korea Electronics Technology Institute, 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Gyeonggi-do, Republic of Korea)

Abstract

This paper presents a study on the development of a hybrid modeling framework for the optimal operation of microgrids based on renewable energy resources. Accurate prediction of both renewable energy generation and consumer demand is crucial for the efficient management of renewable energy-based microgrids. The proposed hybrid modeling framework integrates a high-resolution physical model for forecasting renewable energy sources (solar and wind), a data-driven model for renewable energy prediction, and a hybrid forecasting model that combines both physical and data-driven approaches. Additionally, the framework incorporates a consumer demand model to further optimize grid operations. In this research, a hybrid prediction model was developed to enhance the accuracy of solar and wind power generation forecasts. The hybrid model leverages the complementary strengths of both physical and data-driven models. When historical data are insufficient, the physical model generates synthetic training data to improve the learning process of the data-driven model. Moreover, in cases where the data-driven model exhibits limited predictive accuracy due to insufficient training data, the physical model provides reliable forecasts, ensuring robust performance under various conditions. When sufficient real-world data are available, the Weighted Inverse Error Weighting (WIEW) strategy is applied to dynamically integrate the outputs of both models, significantly enhancing forecasting accuracy. Furthermore, a digital twin platform was implemented to operate and simulate each model, and a validation system for the digital twin platform and models was established using Software-in-the-Loop Simulation (SILS) and Power Hardware-in-the-Loop Simulation (PHILS) techniques. This study focuses on the development and validation of a hybrid model designed to improve the accuracy of solar and wind power generation forecasts for renewable energy microgrids.

Suggested Citation

  • Jaekyu Lee & Eunseop Park & Sangyub Lee, 2025. "Development of a Hybrid Modeling Framework for the Optimal Operation of Microgrids," Energies, MDPI, vol. 18(8), pages 1-28, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2102-:d:1637726
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Habib, Md. Ahasan & Hossain, M.J., 2024. "Advanced feature engineering in microgrid PV forecasting: A fast computing and data-driven hybrid modeling framework," Renewable Energy, Elsevier, vol. 235(C).
    2. Yuzgec, Ugur & Dokur, Emrah & Balci, Mehmet, 2024. "A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting," Energy, Elsevier, vol. 300(C).
    3. Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    5. Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    2. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    3. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    4. Zheng, Jianqin & Du, Jian & Wang, Bohong & Klemeš, Jiří Jaromír & Liao, Qi & Liang, Yongtu, 2023. "A hybrid framework for forecasting power generation of multiple renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    6. Wang, Jianguo & Yuan, Weiru & Zhang, Shude & Cheng, Shun & Han, Lincheng, 2024. "Implementing ultra-short-term wind power forecasting without information leakage through cascade decomposition and attention mechanism," Energy, Elsevier, vol. 312(C).
    7. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Parametric Forecast of Solar Energy over Time by Applying Machine Learning Techniques: Systematic Review," Energies, MDPI, vol. 18(6), pages 1-51, March.
    8. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    9. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    10. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    11. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    12. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    13. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
    14. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    15. Li, Jianfang & Jia, Li & Zhou, Chengyu, 2024. "Probability density function based adaptive ensemble learning with global convergence for wind power prediction," Energy, Elsevier, vol. 312(C).
    16. Yang, Mao & Guo, Yunfeng & Huang, Tao & Fan, Fulin & Ma, Chenglian & Fang, Guozhong, 2024. "Wind farm cluster power prediction based on graph deviation attention network with learnable graph structure and dynamic error correction during load peak and valley periods," Energy, Elsevier, vol. 312(C).
    17. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    18. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Kevin Tomsovic, 2022. "An MILP-Based Distributed Energy Management for Coordination of Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-20, September.
    19. Fachrizal Aksan & Vishnu Suresh & Przemysław Janik, 2025. "PV Generation Prediction Using Multilayer Perceptron and Data Clustering for Energy Management Support," Energies, MDPI, vol. 18(6), pages 1-16, March.
    20. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2102-:d:1637726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.