IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2012-d1634496.html
   My bibliography  Save this article

A Coordinated Control Strategy for a Coupled Wind Power and Energy Storage System for Hydrogen Production

Author

Listed:
  • Weiwei Wang

    (Hebei Branch, China Nuclear Power Engineering Co., Ltd., Shijiazhuang 050000, China)

  • Yu Qi

    (School of Electric Engineering, Hebei University of Science and Technology, Shijiazhuang 050027, China)

  • Fulei Wang

    (School of Electric Engineering, Hebei University of Science and Technology, Shijiazhuang 050027, China)

  • Yifan Yang

    (School of Electric Engineering, Hebei University of Science and Technology, Shijiazhuang 050027, China)

  • Yingjun Guo

    (School of Electric Engineering, Hebei University of Science and Technology, Shijiazhuang 050027, China)

Abstract

Hydrogen energy, as a medium for long-term energy storage, needs to ensure the continuous and stable operation of the electrolyzer during the production of green hydrogen using wind energy. In this paper, based on the overall model of a wind power hydrogen production system, an integrated control strategy aimed at improving the quality of wind power generation, smoothing the hydrogen production process, and enhancing the stability of the system is proposed. The strategy combines key measures, such as the maximum power point tracking control of the wind turbine and the adaptive coordinated control of the electrochemical energy storage system, which can not only efficiently utilize the wind resources but also effectively ensure the stability of the bus voltage and the smoothness of the hydrogen production process. The simulation results show that the electrolyzer can operate at full power to produce hydrogen while the energy storage device is charging when wind energy is sufficient; the electrolyzer continuously produces hydrogen according to the wind energy when the wind speed is normal; and the energy storage device will take on the task of maintaining the operation of the electrolyzer when the wind speed is insufficient to ensure the stability and reliability of the system.

Suggested Citation

  • Weiwei Wang & Yu Qi & Fulei Wang & Yifan Yang & Yingjun Guo, 2025. "A Coordinated Control Strategy for a Coupled Wind Power and Energy Storage System for Hydrogen Production," Energies, MDPI, vol. 18(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2012-:d:1634496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2012/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2012/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Song & Guo, Bin & Ding, Shunliang & Yang, Fuyuan & Dang, Jian & Liu, Biao & Gu, Junjie & Ma, Jugang & Ouyang, Minggao, 2022. "A comprehensive review of alkaline water electrolysis mathematical modeling," Applied Energy, Elsevier, vol. 327(C).
    2. Zhang, Qian & Qin, Tianxi & Wu, Jiaqi & Hao, Ruiyi & Su, Xin & Li, Chunyan, 2024. "Synergistic operation strategy of electric-hydrogen charging station alliance based on differentiated characteristics," Energy, Elsevier, vol. 304(C).
    3. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    4. Liu, Jinhui & Xu, Zhanbo & Wu, Jiang & Liu, Kun & Guan, Xiaohong, 2021. "Optimal planning of distributed hydrogen-based multi-energy systems," Applied Energy, Elsevier, vol. 281(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Papadimitriou & Marialaura Di Somma & Chrysanthos Charalambous & Martina Caliano & Valeria Palladino & Andrés Felipe Cortés Borray & Amaia González-Garrido & Nerea Ruiz & Giorgio Graditi, 2023. "A Comprehensive Review of the Design and Operation Optimization of Energy Hubs and Their Interaction with the Markets and External Networks," Energies, MDPI, vol. 16(10), pages 1-46, May.
    2. Ma, Tengfei & Pei, Wei & Deng, Wei & Xiao, Hao & Yang, Yanhong & Tang, Chenghong, 2022. "A Nash bargaining-based cooperative planning and operation method for wind-hydrogen-heat multi-agent energy system," Energy, Elsevier, vol. 239(PE).
    3. Fan, Guangyao & Liu, Zhijian & Liu, Xuan & Shi, Yaxin & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Zhang, Yulong, 2022. "Two-layer collaborative optimization for a renewable energy system combining electricity storage, hydrogen storage, and heat storage," Energy, Elsevier, vol. 259(C).
    4. Shi, Mengshu & Wang, Weiye & Han, Yaxuan & Huang, Yuansheng, 2022. "Research on comprehensive benefit of hydrogen storage in microgrid system," Renewable Energy, Elsevier, vol. 194(C), pages 621-635.
    5. Marcus Brennenstuhl & Daniel Lust & Dirk Pietruschka & Dietrich Schneider, 2021. "Demand Side Management Based Power-to-Heat and Power-to-Gas Optimization Strategies for PV and Wind Self-Consumption in a Residential Building Cluster," Energies, MDPI, vol. 14(20), pages 1-29, October.
    6. Gao, Xianhui & Wang, Sheng & Sun, Ying & Zhai, Junyi, 2024. "Low-carbon operation of integrated electricity–gas system with hydrogen injection considering hydrogen mixed gas turbine and laddered carbon trading," Applied Energy, Elsevier, vol. 374(C).
    7. Yang, Bo & Jafarian, Mehdi & Freidoonimehr, Navid & Arjomandi, Maziar, 2024. "Alkaline membrane-free water electrolyser for liquid hydrogen production," Renewable Energy, Elsevier, vol. 233(C).
    8. Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).
    9. Yi, Xinning & Lu, Tianguang & Li, Yixiao & Ai, Qian & Hao, Ran, 2025. "Collaborative planning of multi-energy systems integrating complete hydrogen energy chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    10. Chen, Mengxiao & Cao, Xiaoyu & Zhang, Zitong & Yang, Lun & Ma, Donglai & Li, Miaomiao, 2024. "Risk-averse stochastic scheduling of hydrogen-based flexible loads under 100% renewable energy scenario," Applied Energy, Elsevier, vol. 370(C).
    11. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    12. Pizzuti, Andrea & Jin, Lingkang & Rossi, Mosè & Marinelli, Fabrizio & Comodi, Gabriele, 2024. "A novel approach for multi-stage investment decisions and dynamic variations in medium-term energy planning for multi-energy carriers community," Applied Energy, Elsevier, vol. 353(PB).
    13. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    14. David Franzmann & Thora Schubert & Heidi Heinrichs & Peter A. Kukla & Detlef Stolten, 2025. "Energy Storage Autonomy in Renewable Energy Systems Through Hydrogen Salt Caverns," Papers 2504.12135, arXiv.org, revised Apr 2025.
    15. Dong, Haoxin & Shan, Zijing & Zhou, Jianli & Xu, Chuanbo & Chen, Wenjun, 2023. "Refined modeling and co-optimization of electric-hydrogen-thermal-gas integrated energy system with hybrid energy storage," Applied Energy, Elsevier, vol. 351(C).
    16. Ghilardi, Lavinia Marina Paola & Castelli, Alessandro Francesco & Moretti, Luca & Morini, Mirko & Martelli, Emanuele, 2021. "Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings," Applied Energy, Elsevier, vol. 302(C).
    17. Sakas, Georgios & Ibáñez-Rioja, Alejandro & Pöyhönen, Santeri & Järvinen, Lauri & Kosonen, Antti & Ruuskanen, Vesa & Kauranen, Pertti & Ahola, Jero, 2024. "Sensitivity analysis of the process conditions affecting the shunt currents and the SEC in an industrial-scale alkaline water electrolyzer plant," Applied Energy, Elsevier, vol. 359(C).
    18. Anam Nadeem & Mosè Rossi & Erica Corradi & Lingkang Jin & Gabriele Comodi & Nadeem Ahmed Sheikh, 2022. "Energy-Environmental Planning of Electric Vehicles (EVs): A Case Study of the National Energy System of Pakistan," Energies, MDPI, vol. 15(9), pages 1-19, April.
    19. Tiedemann, Tobias & Dasenbrock, Jan & Kroener, Michael & Satola, Barbara & Reininghaus, Nies & Schneider, Tobias & Vehse, Martin & Schier, Michael & Siefkes, Tjark & Agert, Carsten, 2024. "Supplying electricity and heat to low-energy residential buildings by experimentally integrating a fuel cell electric vehicle with a docking station prototype," Applied Energy, Elsevier, vol. 362(C).
    20. Ahmed I. Osman & Mahmoud Nasr & A. R. Mohamed & Amal Abdelhaleem & Ali Ayati & Mohamed Farghali & Ala'a H. Al‐Muhtaseb & Ahmed S. Al‐Fatesh & David W. Rooney, 2024. "Life cycle assessment of hydrogen production, storage, and utilization toward sustainability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(3), May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2012-:d:1634496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.