IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923015416.html
   My bibliography  Save this article

A novel approach for multi-stage investment decisions and dynamic variations in medium-term energy planning for multi-energy carriers community

Author

Listed:
  • Pizzuti, Andrea
  • Jin, Lingkang
  • Rossi, Mosè
  • Marinelli, Fabrizio
  • Comodi, Gabriele

Abstract

So far, energy planning methods faced several challenges in achieving a proper assessment due to the extreme variability of input conditions. To considerably decrease the computational efforts in achieving solutions, most of the analyses reported in the scientific literature assume constant costs and demand over the entire planning horizon in a typical year. However, results might not be perfectly aligned with real ones because of the incapability of some models to address several aspects like energy demand/production variability, energy and technology costs, efficiency degradation, and use of different energy carriers. This paper proposes a novel methodology that optimises both the long-term planning and short-term scheduling decisions in the management of a multi-energy carries community by means of a Mixed Integer Linear Programming model that also considers the modular design of technologies (e.g., technological devices selection from a discrete set of variants). Such a model has been applied to the case study of a University campus in Italy, whose historical demand data were used for its energy planning with a time horizon of 30 years. Three scenarios have been analysed: (i) the Business As Usual, (ii) the Sector-coupling scenario, and, finally, (iii) the Hydrogen deployment one. The results are obtained under different energy scenarios, showing the effectiveness of the methodology in dealing with multi-investment stages at different planning levels in a reasonable computational time. In particular, they showed that deploying more sustainable technologies would increase the cost of the electricity (between 43%–89%), while reducing other energy carriers’ cost (about 60%) and lowering all energy carriers’ carbon footprint (between 50%–80%). From a long-term perspective, (i) the use of sector-coupling technologies is beneficial from both economic and environmental points of view, and ii) dynamic variations of some parameters can strongly affect the deployment of high-cost technologies to be installed beyond 2030.

Suggested Citation

  • Pizzuti, Andrea & Jin, Lingkang & Rossi, Mosè & Marinelli, Fabrizio & Comodi, Gabriele, 2024. "A novel approach for multi-stage investment decisions and dynamic variations in medium-term energy planning for multi-energy carriers community," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015416
    DOI: 10.1016/j.apenergy.2023.122177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.