IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1752-d1625057.html
   My bibliography  Save this article

Reduced-Order Modeling and Stability Analysis of Grid-Following and Grid-Forming Hybrid Renewable Energy Plants

Author

Listed:
  • Yue Ma

    (China Electric Power Research Institute, Nanjing 210003, China)

  • Ning Chen

    (China Electric Power Research Institute, Nanjing 210003, China)

  • Luming Ge

    (China Electric Power Research Institute, Nanjing 210003, China)

Abstract

The control methods of energy systems can be categorized into grid-following and grid-forming types. The grid-following control method relies on grid synchronization and is prone to stability issues in weak grid conditions. By contrast, the grid-forming control method exhibits synchronous machine characteristics, providing voltage support to the system, but potentially introducing stability risks under strong grid conditions. Constructing a grid-following and grid-forming hybrid renewable energy plant can effectively enhance the system’s support capability and ensure reliable operation. However, the interactions among multiple inverters are complex, and traditional modeling methods are inadequate to meet the modeling requirements for such systems. To effectively address this problem, this paper presents a reduced-order modeling method that simplifies the complex system into a simple system consisting of an equivalent grid-following, an equivalent grid-forming, and grid impedance through frequency decoupling and the aggregation of similar inverters. Furthermore, this study employs both the Nyquist stability criterion and the harmonic characteristic analysis method to elucidate how the capacity ratio between grid-following and grid-forming affects system stability.

Suggested Citation

  • Yue Ma & Ning Chen & Luming Ge, 2025. "Reduced-Order Modeling and Stability Analysis of Grid-Following and Grid-Forming Hybrid Renewable Energy Plants," Energies, MDPI, vol. 18(7), pages 1-28, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1752-:d:1625057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dalala, Zakariya & Al-Omari, Murad & Al-Addous, Mohammad & Bdour, Mathhar & Al-Khasawneh, Yaqoub & Alkasrawi, Malek, 2022. "Increased renewable energy penetration in national electrical grids constraints and solutions," Energy, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniele Candelaresi & Giuseppe Spazzafumo, 2023. "Production of Substitute Natural Gas Integrated with Allam Cycle for Power Generation," Energies, MDPI, vol. 16(5), pages 1-17, February.
    2. Riccardo Fraboni & Gianluca Grazieschi & Simon Pezzutto & Benjamin Mitterrutzner & Eric Wilczynski, 2023. "Environmental Assessment of Residential Space Heating and Cooling Technologies in Europe: A Review of 11 European Member States," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    3. Woo-Cheol Jeong & Da-Han Lee & Jae Hyung Roh & Jong-Bae Park, 2022. "Scenario Analysis of the GHG Emissions in the Electricity Sector through 2030 in South Korea Considering Updated NDC," Energies, MDPI, vol. 15(9), pages 1-12, May.
    4. Ahmad Amiruddin & Roger Dargaville & Ross Gawler, 2024. "Optimal Integration of Renewable Energy, Energy Storage, and Indonesia’s Super Grid," Energies, MDPI, vol. 17(20), pages 1-29, October.
    5. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Harun Or Rashid Howlader & Akito Nakadomari & Tomonobu Senjyu, 2023. "Optimal Capacity and Operational Planning for Renewable Energy-Based Microgrid Considering Different Demand-Side Management Strategies," Energies, MDPI, vol. 16(10), pages 1-25, May.
    6. Adewuyi, Oludamilare Bode & Aki, Hirohisa, 2024. "Optimal planning for high renewable energy integration considering demand response, uncertainties, and operational performance flexibility," Energy, Elsevier, vol. 313(C).
    7. Abdulkadir Atalan, 2023. "Forecasting drinking milk price based on economic, social, and environmental factors using machine learning algorithms," Agribusiness, John Wiley & Sons, Ltd., vol. 39(1), pages 214-241, January.
    8. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    9. Ding, Yan & Zhang, Haozheng & Yang, Xiaochen & Tian, Zhe & Huang, Chen, 2024. "An adaptive switching control model for air conditioning systems based on information completeness," Applied Energy, Elsevier, vol. 375(C).
    10. Wei, Zhinong & Yang, Li & Chen, Sheng & Ma, Zhoujun & Zang, Haixiang & Fei, Youdie, 2022. "A multi-stage planning model for transitioning to low-carbon integrated electric power and natural gas systems," Energy, Elsevier, vol. 254(PC).
    11. Guerra, K. & Welfle, A. & Gutiérrez-Alvarez, R. & Freer, M. & Ma, L. & Haro, P., 2024. "The role of energy storage in Great Britain's future power system: focus on hydrogen and biomass," Applied Energy, Elsevier, vol. 357(C).
    12. Yuchen Liu & Zhenhai Dou & Zheng Wang & Jiaming Guo & Jingwei Zhao & Wenliang Yin, 2024. "Optimal Configuration of Electricity-Heat Integrated Energy Storage Supplier and Multi-Microgrid System Scheduling Strategy Considering Demand Response," Energies, MDPI, vol. 17(21), pages 1-23, October.
    13. Komorowska, Aleksandra & Olczak, Piotr, 2024. "Economic viability of Li-ion batteries based on the price arbitrage in the European day-ahead markets," Energy, Elsevier, vol. 290(C).
    14. Ashitosh Rajesh Varne & Simon Blouin & Baxter Lorenzo McIntosh Williams & David Denkenberger, 2024. "The Impact of Abrupt Sunlight Reduction Scenarios on Renewable Energy Production," Energies, MDPI, vol. 17(20), pages 1-16, October.
    15. Ahmad Amiruddin & Roger Dargaville & Ariel Liebman & Ross Gawler, 2024. "Integration of Electric Vehicles and Renewable Energy in Indonesia’s Electrical Grid," Energies, MDPI, vol. 17(9), pages 1-24, April.
    16. Guerra, K. & Gutiérrez-Alvarez, R. & Guerra, Omar J. & Haro, P., 2023. "Opportunities for low-carbon generation and storage technologies to decarbonise the future power system," Applied Energy, Elsevier, vol. 336(C).
    17. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Dynamic simulation and thermoeconomic analysis of a power to gas system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    18. Jia Liang & Yongpei Wang, 2024. "Recognizing the nexus between grid infrastructure, renewable energy, net interregional transmission and carbon emissions: Evidence from China," Growth and Change, Wiley Blackwell, vol. 55(1), March.
    19. Davide Astolfi & Silvia Iuliano & Antony Vasile & Marco Pasetti & Salvatore Dello Iacono & Alfredo Vaccaro, 2024. "Wind Turbine Static Errors Related to Yaw, Pitch or Anemometer Apparatus: Guidelines for the Diagnosis and Related Performance Assessment," Energies, MDPI, vol. 17(24), pages 1-34, December.
    20. Uma S. Bhatt & Benjamin A. Carreras & José Miguel Reynolds Barredo & David E. Newman & Pere Collet & Damiá Gomila, 2022. "The Potential Impact of Climate Change on the Efficiency and Reliability of Solar, Hydro, and Wind Energy Sources," Land, MDPI, vol. 11(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1752-:d:1625057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.