IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1637-d1619711.html
   My bibliography  Save this article

Accelerating Energy Forecasting with Data Dimensionality Reduction in a Residential Environment

Author

Listed:
  • Rafael Gonçalves

    (Instituto de Telecomunicações, 3810-193 Aveiro, Portugal)

  • Diogo Magalhães

    (Instituto de Telecomunicações, 3810-193 Aveiro, Portugal)

  • Rafael Teixeira

    (Instituto de Telecomunicações, 3810-193 Aveiro, Portugal)

  • Mário Antunes

    (Instituto de Telecomunicações, 3810-193 Aveiro, Portugal
    Departamento de Eletrónica, Telecomunicações e Informática, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Diogo Gomes

    (Instituto de Telecomunicações, 3810-193 Aveiro, Portugal
    Departamento de Eletrónica, Telecomunicações e Informática, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Rui L. Aguiar

    (Instituto de Telecomunicações, 3810-193 Aveiro, Portugal
    Departamento de Eletrónica, Telecomunicações e Informática, University of Aveiro, 3810-193 Aveiro, Portugal)

Abstract

The non-stationary nature of energy data is a serious challenge for energy forecasting methods. Frequent model updates are necessary to adapt to distribution shifts and avoid performance degradation. However, retraining regression models with lookback windows large enough to capture energy patterns is computationally expensive, as increasing the number of features leads to longer training times. To address this problem, we propose an approach that guarantees fast convergence through dimensionality reduction. Using a synthetic neighborhood dataset, we first validate three deep learning models—an artificial neural network (ANN), a 1D convolutional neural network (1D-CNN), and a long short-term memory (LSTM) network. Then, in order to mitigate the long training time, we apply principal component analysis (PCA) and a variational autoencoder (VAE) for feature reduction. As a way to ensure the suitability of the proposed models for a residential context, we also explore the trade-off between low error and training speed by considering three test scenarios: a global model, a local model for each building, and a global model that is fine-tuned for each building. Our results demonstrate that by selecting the optimal dimensionality reduction method and model architecture, it is possible to decrease the mean squared error (MSE) by up to 63% and accelerate training by up to 80%.

Suggested Citation

  • Rafael Gonçalves & Diogo Magalhães & Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2025. "Accelerating Energy Forecasting with Data Dimensionality Reduction in a Residential Environment," Energies, MDPI, vol. 18(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1637-:d:1619711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1637/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yinghui Meng & Sultan Noman Qasem & Manouchehr Shokri & Shahab S, 2020. "Dimension Reduction of Machine Learning-Based Forecasting Models Employing Principal Component Analysis," Mathematics, MDPI, vol. 8(8), pages 1-15, July.
    2. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    2. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    3. Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
    4. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    5. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    6. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    7. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    8. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    9. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko, 2021. "ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise," Energies, MDPI, vol. 14(23), pages 1-22, November.
    10. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    11. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    12. Leonard Burg & Gonca Gürses-Tran & Reinhard Madlener & Antonello Monti, 2021. "Comparative Analysis of Load Forecasting Models for Varying Time Horizons and Load Aggregation Levels," Energies, MDPI, vol. 14(21), pages 1-16, November.
    13. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    14. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    15. Samuel Yankson & Mahdi Ghamkhari, 2019. "Transactive Energy to Thwart Load Altering Attacks on Power Distribution Systems," Future Internet, MDPI, vol. 12(1), pages 1-14, December.
    16. Correa-Florez, Carlos Adrian & Gerossier, Alexis & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Stochastic operation of home energy management systems including battery cycling," Applied Energy, Elsevier, vol. 225(C), pages 1205-1218.
    17. Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2018. "Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting," Energies, MDPI, vol. 11(8), pages 1-19, August.
    18. Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.
    19. de Hoog, Julian & Abdulla, Khalid, 2019. "Data visualization and forecast combination for probabilistic load forecasting in GEFCom2017 final match," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1451-1459.
    20. Janusz Sowinski, 2021. "The Impact of the Selection of Exogenous Variables in the ANFIS Model on the Results of the Daily Load Forecast in the Power Company," Energies, MDPI, vol. 14(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1637-:d:1619711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.