IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2080-d163007.html
   My bibliography  Save this article

Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting

Author

Listed:
  • Miguel López

    (Department of Mechanic Engineering and Energy, Universidad Miguel Hernández, 03202 Elx, Alacant, Spain)

  • Carlos Sans

    (Department of Mechanic Engineering and Energy, Universidad Miguel Hernández, 03202 Elx, Alacant, Spain)

  • Sergio Valero

    (Department of Mechanic Engineering and Energy, Universidad Miguel Hernández, 03202 Elx, Alacant, Spain)

  • Carolina Senabre

    (Department of Mechanic Engineering and Energy, Universidad Miguel Hernández, 03202 Elx, Alacant, Spain)

Abstract

Artificial Intelligence (AI) has been widely used in Short-Term Load Forecasting (STLF) in the last 20 years and it has partly displaced older time-series and statistical methods to a second row. However, the STLF problem is very particular and specific to each case and, while there are many papers about AI applications, there is little research determining which features of an STLF system is better suited for a specific data set. In many occasions both classical and modern methods coexist, providing combined forecasts that outperform the individual ones. This paper presents a thorough empirical comparison between Neural Networks (NN) and Autoregressive (AR) models as forecasting engines. The objective of this paper is to determine the circumstances under which each model shows a better performance. It analyzes one of the models currently in use at the National Transport System Operator in Spain, Red Eléctrica de España (REE), which combines both techniques. The parameters that are tested are the availability of historical data, the treatment of exogenous variables, the training frequency and the configuration of the model. The performance of each model is measured as RMSE over a one-year period and analyzed under several factors like special days or extreme temperatures. The AR model has 0.13% lower error than the NN under ideal conditions. However, the NN model performs more accurately under certain stress situations.

Suggested Citation

  • Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2018. "Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting," Energies, MDPI, vol. 11(8), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2080-:d:163007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    2. Amjady, N. & Keynia, F., 2009. "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm," Energy, Elsevier, vol. 34(1), pages 46-57.
    3. Wang, Pu & Liu, Bidong & Hong, Tao, 2016. "Electric load forecasting with recency effect: A big data approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
    4. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    5. Charlton, Nathaniel & Singleton, Colin, 2014. "A refined parametric model for short term load forecasting," International Journal of Forecasting, Elsevier, vol. 30(2), pages 364-368.
    6. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    2. Manogaran Madhiarasan & Mohamed Louzazni, 2021. "Different Forecasting Horizons Based Performance Analysis of Electricity Load Forecasting Using Multilayer Perceptron Neural Network," Forecasting, MDPI, vol. 3(4), pages 1-35, November.
    3. Yijun Wang & Peiqian Guo & Nan Ma & Guowei Liu, 2022. "Robust Wavelet Transform Neural-Network-Based Short-Term Load Forecasting for Power Distribution Networks," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    4. Umar Javed & Khalid Ijaz & Muhammad Jawad & Ejaz A. Ansari & Noman Shabbir & Lauri Kütt & Oleksandr Husev, 2021. "Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis," Energies, MDPI, vol. 14(17), pages 1-22, September.
    5. Gabriel Trierweiler Ribeiro & João Guilherme Sauer & Naylene Fraccanabbia & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Bayesian Optimized Echo State Network Applied to Short-Term Load Forecasting," Energies, MDPI, vol. 13(9), pages 1-19, May.
    6. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Reduction of Computational Burden and Accuracy Maximization in Short-Term Load Forecasting," Energies, MDPI, vol. 15(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel López & Sergio Valero & Carlos Sans & Carolina Senabre, 2020. "Use of Available Daylight to Improve Short-Term Load Forecasting Accuracy," Energies, MDPI, vol. 14(1), pages 1-14, December.
    2. Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
    3. Sobhani, Masoud & Hong, Tao & Martin, Claude, 2020. "Temperature anomaly detection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 36(2), pages 324-333.
    4. Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016. "Improving short term load forecast accuracy via combining sister forecasts," Energy, Elsevier, vol. 98(C), pages 40-49.
    5. Seyedeh Narjes Fallah & Mehdi Ganjkhani & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview," Energies, MDPI, vol. 12(3), pages 1-21, January.
    6. Masoud Sobhani & Allison Campbell & Saurabh Sangamwar & Changlin Li & Tao Hong, 2019. "Combining Weather Stations for Electric Load Forecasting," Energies, MDPI, vol. 12(8), pages 1-11, April.
    7. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    8. Zengping Wang & Bing Zhao & Haibo Guo & Lingling Tang & Yuexing Peng, 2019. "Deep Ensemble Learning Model for Short-Term Load Forecasting within Active Learning Framework," Energies, MDPI, vol. 12(20), pages 1-13, October.
    9. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    10. Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
    11. Luca Massidda & Marino Marrocu, 2018. "Smart Meter Forecasting from One Minute to One Year Horizons," Energies, MDPI, vol. 11(12), pages 1-16, December.
    12. Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
    13. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    14. Marlon Schlemminger & Raphael Niepelt & Rolf Brendel, 2021. "A Cross-Country Model for End-Use Specific Aggregated Household Load Profiles," Energies, MDPI, vol. 14(8), pages 1-24, April.
    15. Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
    16. Alexis Gerossier & Robin Girard & Alexis Bocquet & George Kariniotakis, 2018. "Robust Day-Ahead Forecasting of Household Electricity Demand and Operational Challenges," Energies, MDPI, vol. 11(12), pages 1-18, December.
    17. George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
    18. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Reduction of Computational Burden and Accuracy Maximization in Short-Term Load Forecasting," Energies, MDPI, vol. 15(10), pages 1-18, May.
    19. Dumas, Jonathan & Wehenkel, Antoine & Lanaspeze, Damien & Cornélusse, Bertrand & Sutera, Antonio, 2022. "A deep generative model for probabilistic energy forecasting in power systems: normalizing flows," Applied Energy, Elsevier, vol. 305(C).
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2080-:d:163007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.