IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1568-d1617405.html
   My bibliography  Save this article

Detection and Localization of False Data Injection Attacks in Smart Grids Applying an Interpretable Fuzzy Genetic Machine Learning/Data Mining Approach

Author

Listed:
  • Marian B. Gorzałczany

    (Department of Electrical and Computer Engineering, Kielce University of Technology, Al. 1000-lecia P.P. 7, 25-314 Kielce, Poland
    These authors contributed equally to this work.)

  • Filip Rudziński

    (Department of Electrical and Computer Engineering, Kielce University of Technology, Al. 1000-lecia P.P. 7, 25-314 Kielce, Poland
    These authors contributed equally to this work.)

Abstract

In this paper, we consider the problem of accurate, transparent, and interpretable detection, as well as the localization of false data injection attacks (FDIAs) in smart grids. In order to address that problem, we employ our knowledge discovery machine learning/data mining (ML/DM) approach—implemented as a collection of fuzzy rule-based classifiers (FR-BCs)—characterized by a genetically optimized accuracy–interpretability trade-off. Our approach uses our generalization (showing better performance) of the well-known SPEA2 method to carry out the genetic learning and multiobjective optimization process. The main contribution of this work is designing—using our approach—a collection of fast, accurate, and interpretable FR-BCs for FDIA detection and localization from the recently published FDIA data that describe various aspects of FDIAs in smart grids. Our approach generates FDIAs’ detection and localization systems characterized by very high accuracy (97.8% and 99.5% for the IEEE 14-bus and 118-bus systems, respectively) and very high interpretability (on average, 4.6 and 3.8 simple fuzzy rules for earlier-mentioned systems, respectively, i.e., a few easy to comprehend fuzzy rules). The contribution of this paper also includes a comparative analysis of our approach and 12 alternative methods applied to the same FDIAs’ data. This analysis shows that our approach totally outperforms the alternative approaches in terms of transparency and interpretability of FDIA detection and localization decisions while remaining competitive or superior in terms of the accuracy of generated decisions.

Suggested Citation

  • Marian B. Gorzałczany & Filip Rudziński, 2025. "Detection and Localization of False Data Injection Attacks in Smart Grids Applying an Interpretable Fuzzy Genetic Machine Learning/Data Mining Approach," Energies, MDPI, vol. 18(7), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1568-:d:1617405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qu, Zhaoyang & Dong, Yunchang & Li, Yang & Song, Siqi & Jiang, Tao & Li, Min & Wang, Qiming & Wang, Lei & Bo, Xiaoyong & Zang, Jiye & Xu, Qi, 2024. "Localization of dummy data injection attacks in power systems considering incomplete topological information: A spatio-temporal graph wavelet convolutional neural network approach," Applied Energy, Elsevier, vol. 360(C).
    2. Fu, Yangyang & O'Neill, Zheng & Yang, Zhiyao & Adetola, Veronica & Wen, Jin & Ren, Lingyu & Wagner, Tim & Zhu, Qi & Wu, Terresa, 2021. "Modeling and evaluation of cyber-attacks on grid-interactive efficient buildings," Applied Energy, Elsevier, vol. 303(C).
    3. Reda, Haftu Tasew & Anwar, Adnan & Mahmood, Abdun, 2022. "Comprehensive survey and taxonomies of false data injection attacks in smart grids: attack models, targets, and impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Hou, Jiazuo & Hu, Chenxi & Lei, Shunbo & Hou, Yunhe, 2024. "Cyber resilience of power electronics-enabled power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Chen, Jinbao & Zeng, Quan & Zou, Yidong & Li, Shaojie & Zheng, Yang & Liu, Dong & Xiao, Zhihuai, 2024. "Intelligent robust control for nonlinear complex hydro-turbine regulation system based on a novel state space equation and dynamic feedback linearization," Energy, Elsevier, vol. 302(C).
    4. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    5. Fu, Yangyang & Xu, Shichao & Zhu, Qi & O’Neill, Zheng & Adetola, Veronica, 2023. "How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system," Energy, Elsevier, vol. 273(C).
    6. Zhu, Tianci & Wang, Jun & Zhu, Yonghai & Chen, Haoran & Zhang, Hang & Yin, Shanshan, 2024. "Power grid network security: A lightweight detection model for composite false data injection attacks using spatiotemporal features," International Journal of Critical Infrastructure Protection, Elsevier, vol. 46(C).
    7. Moudgil, Vipul & Hewage, Kasun & Hussain, Syed Asad & Sadiq, Rehan, 2023. "Integration of IoT in building energy infrastructure: A critical review on challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    8. Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
    9. Lin, Wen-Ting & Chen, Guo & Huang, Yuhan, 2022. "Incentive edge-based federated learning for false data injection attack detection on power grid state estimation: A novel mechanism design approach," Applied Energy, Elsevier, vol. 314(C).
    10. Wadi, Mohammed & Shobole, Abdulfetah & Elmasry, Wisam & Kucuk, Ismail, 2024. "Load frequency control in smart grids: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    12. Wei, Mingjun & Jiang, Zixin & Pandey, Pratik & Liu, Mingzhe & Li, Rongling & O'Neill, Zheng & Dong, Bing & Hamdy, Mohamed, 2025. "Energy resilience in the built environment: A comprehensive review of concepts, metrics, and strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1568-:d:1617405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.