IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925004199.html
   My bibliography  Save this article

AI-enhanced resilience in power systems: Adversarial deep learning for robust short-term voltage stability assessment under cyber-attacks

Author

Listed:
  • Li, Yang
  • Zhang, Shitu
  • Li, Yuanzheng

Abstract

In the era of Industry 4.0, ensuring the resilience of cyber-physical systems against sophisticated cyber threats is increasingly critical. This study proposes a pioneering AI-based control framework that enhances short-term voltage stability assessments (STVSA) in power systems under complex composite cyber-attacks. First, by incorporating white-box and black-box adversarial attacks with Denial-of-Service (DoS) perturbations during training, composite adversarial attacks are implemented. Second, the application of Spectral Normalized Conditional Wasserstein Generative Adversarial Network with Gradient Penalty (SNCWGAN-GP) and Fast Gradient Sign Method (FGSM) strengthens the model's resistance to adversarial disturbances, improving data quality and training stability. Third, an assessment model based on Long Short-Term Memory (LSTM)-enhanced Graph Attention Network (L-GAT) is developed to capture dynamic relationships between the post-fault dynamic trajectories and electrical grid topology. Experimental results on the IEEE 39-bus test system demonstrate the efficacy and superiority of the proposed method in composite cyber-attack scenarios. This contribution is pivotal to advancing AI-based resilient control strategies for nonlinear dynamical systems, marking a substantial enhancement in the security of cyber-physical systems.

Suggested Citation

  • Li, Yang & Zhang, Shitu & Li, Yuanzheng, 2025. "AI-enhanced resilience in power systems: Adversarial deep learning for robust short-term voltage stability assessment under cyber-attacks," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004199
    DOI: 10.1016/j.chaos.2025.116406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qu, Zhaoyang & Dong, Yunchang & Li, Yang & Song, Siqi & Jiang, Tao & Li, Min & Wang, Qiming & Wang, Lei & Bo, Xiaoyong & Zang, Jiye & Xu, Qi, 2024. "Localization of dummy data injection attacks in power systems considering incomplete topological information: A spatio-temporal graph wavelet convolutional neural network approach," Applied Energy, Elsevier, vol. 360(C).
    2. Diao, Xiaoxu & Zhao, Yunfei & Smidts, Carol & Vaddi, Pavan Kumar & Li, Ruixuan & Lei, Hangtian & Chakhchoukh, Yacine & Johnson, Brian & Blanc, Katya Le, 2024. "Dynamic probabilistic risk assessment for electric grid cybersecurity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Golpîra, Hêmin & Francois, Bruno, 2024. "Artificial intelligence-based approach for islanding detection in cyber-physical power systems," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    4. Li, Yang & Zhang, Meng & Chen, Chen, 2022. "A Deep-Learning intelligent system incorporating data augmentation for Short-Term voltage stability assessment of power systems," Applied Energy, Elsevier, vol. 308(C).
    5. Liu, Z. & Yang, Y., 2021. "Selection of uncertain differential equations using cross validation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Li, Yang & Cao, Jiting & Xu, Yan & Zhu, Lipeng & Dong, Zhao Yang, 2024. "Deep learning based on Transformer architecture for power system short-term voltage stability assessment with class imbalance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Li, Yang & Ma, Wenjie & Li, Yuanzheng & Li, Sen & Chen, Zhe & Shahidehpour, Mohammad, 2025. "Enhancing cyber-resilience in integrated energy system scheduling with demand response using deep reinforcement learning," Applied Energy, Elsevier, vol. 379(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Jiayu & Shi, Jianxin & Gao, Lingceng & Zhang, Qiang & Zhu, Kai, 2023. "Uncertain green product supply chain with government intervention," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 136-156.
    2. Wang, Hanxuan & Lu, Na & Liu, Yinhong & Wang, Zhuqing & Wang, Zixuan, 2025. "A multi-module robust method for transient stability assessment against false label injection cyberattacks," Applied Energy, Elsevier, vol. 389(C).
    3. Liu, Qi & Sun, Ke & Liu, Wenqi & Li, Yufeng & Zheng, Xiangyu & Cao, Chenhong & Li, Jiangtao & Qin, Wutao, 2025. "Quantitative risk assessment for connected automated Vehicles: Integrating improved STPA-SafeSec and Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    4. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    5. Zhang, Xiangyu & Glaws, Andrew & Cortiella, Alexandre & Emami, Patrick & King, Ryan N., 2025. "Deep generative models in energy system applications: Review, challenges, and future directions," Applied Energy, Elsevier, vol. 380(C).
    6. Manuel Dario Jaramillo & Diego Francisco Carrión & Jorge Paul Muñoz, 2023. "A Novel Methodology for Strengthening Stability in Electrical Power Systems by Considering Fast Voltage Stability Index under N − 1 Scenarios," Energies, MDPI, vol. 16(8), pages 1-23, April.
    7. Dongnyok Shim, 2025. "Quantifying Social Benefits of Virtual Power Plants (VPPs) in South Korea: Contingent Valuation Method," Energies, MDPI, vol. 18(12), pages 1-16, June.
    8. Saheed, Yakub Kayode & Misra, Sanjay, 2025. "CPS-IoT-PPDNN: A new explainable privacy preserving DNN for resilient anomaly detection in Cyber-Physical Systems-enabled IoT networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    9. Ma, Yifan & Sun, Wei & Zhao, Zhoulun & Gu, Leqi & Zhang, Hui & Jin, Yucheng & Yuan, Xinmei, 2024. "Physically rational data augmentation for energy consumption estimation of electric vehicles," Applied Energy, Elsevier, vol. 373(C).
    10. Xie, Haonan & Jiang, Meihui & Zhang, Dongdong & Goh, Hui Hwang & Ahmad, Tanveer & Liu, Hui & Liu, Tianhao & Wang, Shuyao & Wu, Thomas, 2023. "IntelliSense technology in the new power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    11. Chao Yu & Yang Zhou & Xiaolong Cui, 2023. "A Client-Cloud-Chain Data Annotation System of Internet of Things for Semi-Supervised Missing Data," Mathematics, MDPI, vol. 11(21), pages 1-18, November.
    12. Marian B. Gorzałczany & Filip Rudziński, 2025. "Detection and Localization of False Data Injection Attacks in Smart Grids Applying an Interpretable Fuzzy Genetic Machine Learning/Data Mining Approach," Energies, MDPI, vol. 18(7), pages 1-23, March.
    13. Yuxuan Zhang & Zhiming Li, 2025. "Estimation problems in two types of uncertain varying coefficient models with imprecise observations," Fuzzy Optimization and Decision Making, Springer, vol. 24(2), pages 223-249, June.
    14. Oludamilare Bode Adewuyi & Komla A. Folly & David T. O. Oyedokun & Emmanuel Idowu Ogunwole, 2022. "Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    15. Shi, Zhongtuo & Yao, Wei & Zhao, Yifan & Ai, Xiaomeng & Wen, Jinyu & Cheng, Shijie, 2024. "Two-stage weakly supervised learning to mitigate label noise for intelligent identification of power system dominant instability mode," Applied Energy, Elsevier, vol. 359(C).
    16. Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
    17. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
    18. Wei, Wei & Sun, Guobin & Li, Peng & Zhang, Qinghui, 2025. "Employing the cluster of node cut sets to improve the robustness of the network measured by connectivity," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    19. Liu, Zhe & Yang, Ying, 2022. "Moment estimation for parameters in high-order uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    20. Zhan, Xianwen & Han, Song & Rong, Na & Cao, Yun, 2023. "A hybrid transfer learning method for transient stability prediction considering sample imbalance," Applied Energy, Elsevier, vol. 333(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.