IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics036054422300467x.html
   My bibliography  Save this article

How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system

Author

Listed:
  • Fu, Yangyang
  • Xu, Shichao
  • Zhu, Qi
  • O’Neill, Zheng
  • Adetola, Veronica

Abstract

Both model predictive control (MPC) and deep reinforcement learning control (DRL) have been presented as a way to approximate the true optimality of a dynamic programming problem, and these two have shown significant operational cost saving potentials for building energy systems. However, there is still a lack of in-depth quantitative studies on their approximation levels to the true optimality, especially in the building energy domain. To fill in the gap, this paper provides a numerical framework that enables the evaluation of the optimality levels of different controllers for building energy systems. This framework is then used to comprehensively compare the optimal control performance of both MPC and DRL controllers with given computation budgets for a single zone fan coil unit system. Note the optimality is estimated based on a user-specific selection of trade-off weights among energy costs, thermal comfort and control slew rates. Compared with the best optimality we can find through expensive optimization simulations, the best DRL agent can maximally approximate the optimality by 96.54%, which outperforms the best MPC whose optimality level is 90.11%. However, due to the stochasticity, the DRL agent is only expected to approximate the optimality by 90.42%, which is almost equivalent to the best MPC. Except for Proximal Policy Optimization (PPO), all DRL agents can have a better approximation to the optimality than the best MPC, and are expected to have better approximation than the MPC with a prediction horizon of 32 steps (15 min per step). In terms of reducing energy cost and thermal discomfort, MPC can outperform the rule-based control (RBC) by 18.47%–25.44%. DRL can be expected to outperform RBC by 18.95%–25.65% ,and the best DRL control policy can outperform RBC by 20.29%–29.72%. Although the comparison of the optimality level is performed in a perfect setting, e.g., MPC assumes perfect models, and DRL assumes a perfect offline training process and online deployment process, this can shed insight on their capabilities of approximating to the original dynamic programming problem.

Suggested Citation

  • Fu, Yangyang & Xu, Shichao & Zhu, Qi & O’Neill, Zheng & Adetola, Veronica, 2023. "How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s036054422300467x
    DOI: 10.1016/j.energy.2023.127073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422300467X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Candanedo, J.A. & Dehkordi, V.R. & Stylianou, M., 2013. "Model-based predictive control of an ice storage device in a building cooling system," Applied Energy, Elsevier, vol. 111(C), pages 1032-1045.
    2. Fu, Yangyang & Han, Xu & Baker, Kyri & Zuo, Wangda, 2020. "Assessments of data centers for provision of frequency regulation," Applied Energy, Elsevier, vol. 277(C).
    3. Fu, Yangyang & O'Neill, Zheng & Yang, Zhiyao & Adetola, Veronica & Wen, Jin & Ren, Lingyu & Wagner, Tim & Zhu, Qi & Wu, Terresa, 2021. "Modeling and evaluation of cyber-attacks on grid-interactive efficient buildings," Applied Energy, Elsevier, vol. 303(C).
    4. Arroyo, Javier & Manna, Carlo & Spiessens, Fred & Helsen, Lieve, 2022. "Reinforced model predictive control (RL-MPC) for building energy management," Applied Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nik, Vahid M. & Hosseini, Mohammad, 2023. "CIRLEM: a synergic integration of Collective Intelligence and Reinforcement learning in Energy Management for enhanced climate resilience and lightweight computation," Applied Energy, Elsevier, vol. 350(C).
    2. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    3. Xiaoyu Xu & Chun Chang & Xinxin Guo & Mingzhi Zhao, 2023. "Experimental and Numerical Study of the Ice Storage Process and Material Properties of Ice Storage Coils," Energies, MDPI, vol. 16(14), pages 1-18, July.
    4. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    5. Yana Galazutdinova & Ruby-Jean Clark & Said Al-Hallaj & Sumanjeet Kaur & Mohammed Farid, 2024. "New Thermochemical Salt Hydrate System for Energy Storage in Buildings," Energies, MDPI, vol. 17(20), pages 1-20, October.
    6. Saloux, E. & Candanedo, J.A., 2019. "Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow," Applied Energy, Elsevier, vol. 241(C), pages 34-45.
    7. Hou, Jiazuo & Hu, Chenxi & Lei, Shunbo & Hou, Yunhe, 2024. "Cyber resilience of power electronics-enabled power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. James Allen & Ari Halberstadt & John Powers & Nael H. El-Farra, 2020. "An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management," Mathematics, MDPI, vol. 8(8), pages 1-28, July.
    9. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
    10. Marian B. Gorzałczany & Filip Rudziński, 2024. "Energy Consumption Prediction in Residential Buildings—An Accurate and Interpretable Machine Learning Approach Combining Fuzzy Systems with Evolutionary Optimization," Energies, MDPI, vol. 17(13), pages 1-24, July.
    11. Gruber, J.K. & Huerta, F. & Matatagui, P. & Prodanović, M., 2015. "Advanced building energy management based on a two-stage receding horizon optimization," Applied Energy, Elsevier, vol. 160(C), pages 194-205.
    12. Luna, José Diogo Forte de Oliveira & Naspolini, Amir & Reis, Guilherme Nascimento Gouvêa dos & Mendes, Paulo Renato da Costa & Normey-Rico, Julio Elias, 2024. "A novel joint energy and demand management system for smart houses based on model predictive control, hybrid storage system and quality of experience concepts," Applied Energy, Elsevier, vol. 369(C).
    13. Wang, Ji-Xiang & Qian, Jian & Wang, Ni & Zhang, He & Cao, Xiang & Liu, Feifan & Hao, Guanqiu, 2023. "A scalable micro-encapsulated phase change material and liquid metal integrated composite for sustainable data center cooling," Renewable Energy, Elsevier, vol. 213(C), pages 75-85.
    14. Tian, Xiaoyu & Zhang, Hanwen & Liu, Lin & Huang, Jiahao & Liu, Liru & Liu, Jing, 2024. "Establishment of LCZ-based urban building energy consumption dataset in hot and humid subtropical regions through a bottom-up method," Applied Energy, Elsevier, vol. 368(C).
    15. Le Cam, M. & Daoud, A. & Zmeureanu, R., 2016. "Forecasting electric demand of supply fan using data mining techniques," Energy, Elsevier, vol. 101(C), pages 541-557.
    16. Chen, Jinbao & Zeng, Quan & Zou, Yidong & Li, Shaojie & Zheng, Yang & Liu, Dong & Xiao, Zhihuai, 2024. "Intelligent robust control for nonlinear complex hydro-turbine regulation system based on a novel state space equation and dynamic feedback linearization," Energy, Elsevier, vol. 302(C).
    17. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    18. Wang, Chengshan & Jiao, Bingqi & Guo, Li & Tian, Zhe & Niu, Jide & Li, Siwei, 2016. "Robust scheduling of building energy system under uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 366-376.
    19. Hormozi, Elham & Hu, Shuwen & Ding, Zhe & Tian, Yu-Chu & Wang, You-Gan & Yu, Zu-Guo & Zhang, Weizhe, 2022. "Energy-efficient virtual machine placement in data centres via an accelerated Genetic Algorithm with improved fitness computation," Energy, Elsevier, vol. 252(C).
    20. Davide Fop & Ali Reza Yaghoubi & Alfonso Capozzoli, 2024. "Validation of a Model Predictive Control Strategy on a High Fidelity Building Emulator," Energies, MDPI, vol. 17(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s036054422300467x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.