IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924024309.html
   My bibliography  Save this article

Rule extraction from deep reinforcement learning controller and comparative analysis with ASHRAE control sequences for the optimal management of Heating, Ventilation, and Air Conditioning (HVAC) systems in multizone buildings

Author

Listed:
  • Razzano, Giuseppe
  • Brandi, Silvio
  • Piscitelli, Marco Savino
  • Capozzoli, Alfonso

Abstract

The paper introduces a novel methodology for optimizing the operation of a centralized Air Handling Unit (AHU) in a multi-zone building served by VAV boxes with interpretable rules extracted from a Deep Reinforcement Learning (DRL) controller trained to enhance energy efficiency and indoor temperature control. To ensure practical application, a Rule Extraction (RE) framework is developed, translating the DRL complex decision-making process into actionable rules using decision trees. A multi-action approach is proposed by developing three different regression trees for adjusting the supply water temperature, the position of the chiller valve, and the position of the economizer damper of the AHU. The extracted rules are benchmarked against the original DRL controller and two conventional control sequences based on ASHRAE 2006 and ASHRAE Guideline 36 within a high-fidelity co-simulation architecture combining Spawn of EnergyPlus and Python. The co-simulation environment uses EnergyPlus for building envelope and loads while HVAC components and controls are implemented in the equation-based modeling language Modelica. Results show that the RE-based controller closely approximates the performance of the DRL policy with an electric energy consumption only 3% higher, highlighting its ability to effectively mirror a more complex control logic, representing a transparent and easily implementable alternative. The controllers based on ASHRAE 2006 and ASHRAE Guideline 36 lead to higher energy consumption (for both chiller and fan) and violations of indoor temperature compared to both RE-based control and DRL. This study underscores the potential of integrating AI-driven control methods with interpretable rule-based systems, facilitating the adoption of advanced energy management strategies in real-world building automation systems.

Suggested Citation

  • Razzano, Giuseppe & Brandi, Silvio & Piscitelli, Marco Savino & Capozzoli, Alfonso, 2025. "Rule extraction from deep reinforcement learning controller and comparative analysis with ASHRAE control sequences for the optimal management of Heating, Ventilation, and Air Conditioning (HVAC) syste," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024309
    DOI: 10.1016/j.apenergy.2024.125046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mu, Yuanpeng & Zhang, Jili & Ma, Zhixian & Liu, Mingsheng, 2023. "A novel air flowrate control method based on terminal damper opening prediction in multi-zone VAV system," Energy, Elsevier, vol. 263(PD).
    2. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2023. "How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method," Applied Energy, Elsevier, vol. 348(C).
    3. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
    4. Silvestri, Alberto & Coraci, Davide & Brandi, Silvio & Capozzoli, Alfonso & Borkowski, Esther & Köhler, Johannes & Wu, Duan & Zeilinger, Melanie N. & Schlueter, Arno, 2024. "Real building implementation of a deep reinforcement learning controller to enhance energy efficiency and indoor temperature control," Applied Energy, Elsevier, vol. 368(C).
    5. Du, Yan & Zandi, Helia & Kotevska, Olivera & Kurte, Kuldeep & Munk, Jeffery & Amasyali, Kadir & Mckee, Evan & Li, Fangxing, 2021. "Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning," Applied Energy, Elsevier, vol. 281(C).
    6. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    7. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    8. Coraci, Davide & Brandi, Silvio & Hong, Tianzhen & Capozzoli, Alfonso, 2023. "Online transfer learning strategy for enhancing the scalability and deployment of deep reinforcement learning control in smart buildings," Applied Energy, Elsevier, vol. 333(C).
    9. Blad, C. & Bøgh, S. & Kallesøe, C. & Raftery, Paul, 2023. "A laboratory test of an Offline-trained Multi-Agent Reinforcement Learning Algorithm for Heating Systems," Applied Energy, Elsevier, vol. 337(C).
    10. Yu, Min Gyung & Pavlak, Gregory S., 2022. "Extracting interpretable building control rules from multi-objective model predictive control data sets," Energy, Elsevier, vol. 240(C).
    11. Fu, Yangyang & Xu, Shichao & Zhu, Qi & O’Neill, Zheng & Adetola, Veronica, 2023. "How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system," Energy, Elsevier, vol. 273(C).
    12. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    13. Liu, Mingzhe & Guo, Mingyue & Fu, Yangyang & O’Neill, Zheng & Gao, Yuan, 2024. "Expert-guided imitation learning for energy management: Evaluating GAIL’s performance in building control applications," Applied Energy, Elsevier, vol. 372(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvestri, Alberto & Coraci, Davide & Brandi, Silvio & Capozzoli, Alfonso & Borkowski, Esther & Köhler, Johannes & Wu, Duan & Zeilinger, Melanie N. & Schlueter, Arno, 2024. "Real building implementation of a deep reinforcement learning controller to enhance energy efficiency and indoor temperature control," Applied Energy, Elsevier, vol. 368(C).
    2. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    3. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    4. Coraci, Davide & Brandi, Silvio & Hong, Tianzhen & Capozzoli, Alfonso, 2023. "Online transfer learning strategy for enhancing the scalability and deployment of deep reinforcement learning control in smart buildings," Applied Energy, Elsevier, vol. 333(C).
    5. Liu, Mingzhe & Guo, Mingyue & Fu, Yangyang & O’Neill, Zheng & Gao, Yuan, 2024. "Expert-guided imitation learning for energy management: Evaluating GAIL’s performance in building control applications," Applied Energy, Elsevier, vol. 372(C).
    6. Charalampos Rafail Lazaridis & Iakovos Michailidis & Georgios Karatzinis & Panagiotis Michailidis & Elias Kosmatopoulos, 2024. "Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management," Energies, MDPI, vol. 17(3), pages 1-33, January.
    7. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
    8. Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    9. Pinto, Giuseppe & Kathirgamanathan, Anjukan & Mangina, Eleni & Finn, Donal P. & Capozzoli, Alfonso, 2022. "Enhancing energy management in grid-interactive buildings: A comparison among cooperative and coordinated architectures," Applied Energy, Elsevier, vol. 310(C).
    10. Guo, Fangzhou & Ham, Sang woo & Kim, Donghun & Moon, Hyeun Jun, 2025. "Deep reinforcement learning control for co-optimizing energy consumption, thermal comfort, and indoor air quality in an office building," Applied Energy, Elsevier, vol. 377(PA).
    11. Davide Deltetto & Davide Coraci & Giuseppe Pinto & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings," Energies, MDPI, vol. 14(10), pages 1-25, May.
    12. Zhou, Xinlei & Du, Han & Xue, Shan & Ma, Zhenjun, 2024. "Recent advances in data mining and machine learning for enhanced building energy management," Energy, Elsevier, vol. 307(C).
    13. Nik, Vahid M. & Hosseini, Mohammad, 2023. "CIRLEM: a synergic integration of Collective Intelligence and Reinforcement learning in Energy Management for enhanced climate resilience and lightweight computation," Applied Energy, Elsevier, vol. 350(C).
    14. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    15. Simona-Vasilica Oprea & Adela Bâra & Florina Camelia Puican & Ioan Cosmin Radu, 2021. "Anomaly Detection with Machine Learning Algorithms and Big Data in Electricity Consumption," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    16. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    17. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    18. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
    19. Yi, Zonggen & Luo, Yusheng & Westover, Tyler & Katikaneni, Sravya & Ponkiya, Binaka & Sah, Suba & Mahmud, Sadab & Raker, David & Javaid, Ahmad & Heben, Michael J. & Khanna, Raghav, 2022. "Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    20. Zeyue Sun & Mohsen Eskandari & Chaoran Zheng & Ming Li, 2022. "Handling Computation Hardness and Time Complexity Issue of Battery Energy Storage Scheduling in Microgrids by Deep Reinforcement Learning," Energies, MDPI, vol. 16(1), pages 1-20, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.